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Fig. 1: Our demonstration will show our three different open-source robot hands that each cost around $2000 and are extremely
easy to fabricate and 3D print. First, LEAP Hand (RSS 2023) is an easy-to-use robot hand that will be demonstrated doing
sim2real in-hand reorientation. Second, DASH hand is a soft, compliant and durable robot hand that will be shown doing
real-world learning and teleoperation from human video. Finally, LEAP Hand v2 is our newest robot hand that has a human-like
size and incredible strength. It will be shown using our new MoCap teleoperation system. The demo will engage with the
attendees using real robot hands and will serve to demystify dexterous manipulation hardware.

Abstract—Emulating human-like dexterity with robotic hands
has been a long-standing challenge in robotics. In recent years,
machine learning has demanded robot hands to be reliable,
inexpensive and easy-to-reproduce. For the past few years
we have been investigating how to address these demands.
[1, 2, 3, 4, 5, 6] We will demonstrate our three robot hands
that address this problem ranging from rigid easy-to-simulate
hand to soft but strong dexterous robot hands performing three
different machine learning tasks. Our first machine learning
task will be teleoperation, where we will develop a new mobile
arm and hand motion capture system that we will bring to
RSS 2024. Second, we will demonstrate how to use human-video
and human motion to teach robot hands. Finally, we will show
how to continually improve these policies using reinforcement
learning in both simulation and the real-world. This demo will
be engaging, will serve to demystify dexterous manipulation and
inspire researchers to bring robot hands into their own projects.
Please see our website at https://leaphand.com/rss2024demo for
more interactive information.

I. INTRODUCTION

Think about activities such as typing on your keyboard,
hammering a nail, or using chopsticks, and you’ll realize
the pivotal role our hands play in manipulating the world.
With remarkable strength at the fingertips, capable of over 70
different pinching and grasping motions, our hands possess
unparalleled sensory abilities. This extraordinary sensing and
adaptability are orchestrated by the impressive capabilities of
our brains. The development of our brains is often linked to
the necessity of manipulating our surroundings with our hands
[7].

In the realm of robotics, manipulation has predominantly
relied on claw grippers or suction cups for pick-and-place tasks
in factories. However, the collective aspiration is to witness
humanoid robots coexisting with humans, undertaking similar
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tasks. The absence of robot humanoids with efficient robotic
hands raises the question: Why haven’t they become a reality?

One major bottleneck is that while there are a few robot
hands are available today, the prevailing opinion is that they
are challenging to use, expensive, and difficult to acquire. The
belief has been that the human kinematic structure and strength
is difficult to produce in robot hands. Some robot hands such
as are too large, some have fewer degrees of freedom and other
are extremely difficult to produce and maintain. We believe this
isn’t an inherent flaw in robot hands but rather a consequence of
not designing them correctly. To break through this prevailing
belief, we will show demonstrative proof with three of our
robot hands. We will have hands-on real robot demos with
at least 6 robot hands and 2 robot arms:

1) LEAP Hand: The most popular open-source robot hand
for academia with over 50 being actively used only 6
months after release. At RSS 2023, we provided demos
of both our Mocap and sim2real pipelines with great
audience participation.

2) DASH Hand: A completely soft, small tendon-driven
robot hand with 3 DOF per finger.

3) LEAP Hand v2: Our smallest and strongest open-source
robot hand that is still easy to assemble. It has 3D printed
soft fingers and an articulated palm both with hard plastic
skeletal structures to unlock great performance.

While having strong hardware is an important foundation, it
is only a part of dexterous manipulation. To perform robot
learning, we must leverage video data and demonstrations
from kinematically similar human hands. The robot hands
will be mixed together to demonstrate these three key robot
learning paradigms:

1) Motion Capture Teleoperation: Significant advances
in motion-capture such as the Manus Meta Glove enable
accurate teleoperation on robot hands and arms. Attendees
will be able to teleoperate all three robot hands using
our newly developed open-source mocap system.

2) Learning from Human Video: Easily collectible data
can be obtained through human video, such as from the
internet. We develop how to utilize this human hand data
to train robot hands. Real robot hands will be running
autonomous policy rollouts and videos will play of how
to convert human video to pseudo-robot experience.

3) Real-world and simulation-based RL: We enable robot
hands to continually learn and iteratively improve from
their training data through real-world experience and
simulation. Similar to RSS 2023, but at larger scale,
sim2real policies will be doing various behaviors such
as in-hand reorientation.

These are hands-on demos with almost all real robot
hands. For methods that are difficult to demo, such as real-
world learning or retargeting from human video, a few accom-
panying videos will be shown during the 5 min presentation
and also during the demo duration.

This demo serves to guide robotics researchers and demys-
tify the field of dexterous manipulation. The demo will be

engaging to attendees with many strong hands-on examples of
teleoperation for behavior cloning and sim2real. This is enabled
by our novel class of robot hands, which are significantly more
dexterous, open-source, stronger, cost-effective (each all around
$2000 and easy-assembly) and more user-friendly than existing
counterparts. We hope this demo will inspire attendees to
bring open-source dexterous robot hands into their own
manipulation projects. To further support this mission, we
will bring 3D printed parts kits that some RSS 2024 attendees
can bring home to help kick-start their research using these
open-source robot hands.

Both the hardware instructions and the learning methods
demonstrated are already open-sourced or will be by RSS
2024. Some of these efforts are based off of many papers
that the authors have published in the past, LEAP Hand [4],
DASH Hand [5] for hardware and Robotic Telekinesis, [8],
Videodex [2] and DEFT [3] in learning from human videos and
Dexterous Functional Grasping [6] for sim2real. However, this
demo will also have elements that are unique and developed
for RSS 2024. This includes our bimanual teleop system never
seen before in our published work.

II. RELATED WORK

Robot Hands Over the course of time, numerous robotic
hands have been developed to mimic the capabilities of the
human hand, with varying degrees of success and accessi-
bility. Notably, the Shadow hand, as documented in [9, 10],
has demonstrated remarkable achievements such as in-hand
reorientation of a Rubik’s cube [11]. Despite its impressive
performance, the Shadow hand is widely acknowledged for its
high cost (approximately $150k) and challenging usability.

Conversely, the Allegro Hand [12, 13], has been historically
recognized as a more affordable option priced at $20k. However,
it is often criticized for its tendency to break down and
the associated difficulties in repair. Nevertheless, the Allegro
Hand has showcased commendable capabilities, including
teleoperation from video [1, 14, 15, 2, 5], as well as in-hand
reorientation [16]. The Psyonic Ability Hand, designed as a
prosthetic with a robust internal hard skeleton and soft exterior
but only possesses 6 degrees of freedom (6DOF) [17].

The emergence of rapid-prototyping technologies, such as
3D printers and CNCs, has led to the development of a plethora
of low-cost, open-source hands tailored for academic research
purposes. The LEAP Hand, detailed in our papers [4, 6] is
easy to use and has been used by many research labs around
the world. The Robel suite, exemplified by D’Manus, offers
large yet durable hands employed in tasks such as reorientation
[18] and grasping [19]. Other hands, such as Inmoov [20]
and DexHand [21], cater to hobbyists but may be limited by
inexpensive motors or fragile plastic components.

Some advanced robotic hands, while challenging to manufac-
ture and acquire, showcase remarkable results in their respective
laboratories. The MIT/Utah Hand has an early tendon-driven
design [22]. [23, 24, 25, 26, 27] developed this area of
tendon-driven hands. The dexterous all-soft hand, with palm
articulations in a completely soft structure, is presented in [28].



Fig. 3: In LEAP Hand, we introduce a MCP joint that allows for abduction and adduction in both flexed and extended positions. This allows
for a large range of motion of the fingertip. In a conventional hand, LEAP-C Hand, the finger can move side to side in the open-palm, but in
the flexed position it only spins in place. In Allegro, there is a large of motion at flexed but not in the extended position. [4]

Additionally, the Faive Hand [29] demonstrates noteworthy
sim2real results in in-hand reorientation.

A resurgence of interest in humanoid robotics from industry
players like Tesla Optimus [30], Figure [31], BD Atlas [32],
1x [33], Sanctuary AI [34], and Digit [35] has been observed.
These hands are designed for strength and mass production to
handle daily tasks for humanoids. However, they often feature
limited degrees of freedom and are not readily available for
purchase, evaluation, or research purposes.

Rapid Manufacturing The conventional approach to
fabricating robust components involves machining, such as
with aluminum which incurs high costs. The production of
plastic parts, historically characterized by a sequence involving
mold creation, casting, curing, and support removal [36], is
suitable for large-scale production. Conversely, the advent of
3D printing has revolutionized the landscape of small-scale
manufacturing [37], facilitating the autonomous, rapid printing
of individual parts automatically.

The 3D printing field has seen significant material ad-
vancements, with materials like TPU/TPE by Ninjatek and
Filaflex, offering new flexibility [38, 39]. Foaming materials
such as Colorfabb Varioshore enable the adjustment of ma-
terial properties through flow-rate modulation. Additionally,
materials like Nylon and carbon-fiber, when utilized in 3D
printing, provide noteworthy strength and durability. Consumer-
friendly multimaterial 3D printers have become affordable and
accessible.

Learning for Dexterous Manipulation In robot learning
Andrychowicz et al. achieved in-hand rotation for various
objects using a Shadow hand and Sim2real techniques. [40, 11].
Simulation-based training that scales to thousands of objects
is explored in works such as [41, 42, 43, 6] which shows
promise in robot learning. D’Hand is utilized by Nair et al. to
reposition a valve [44]. Other notable instances of dexterous
manipulation include Baoding Balls’ in-hand rotation using
the Shadow Hand trained exclusively in the real world [45].

Recent research emphasizes supervising policies for robot
hands based on human actions such as from MANO [46]
parameters of the human hand. Related work involves the

teleoperation of robot hands from real-time video [14, 1] and
can offer guidance for learning [2, 47, 48]. Hand poses extracted
from online video data are leveraged for learning manipulation
policies [47, 49]. Large-scale pre-training using internet videos
proves beneficial for efficiently training robot hands for
downstream tasks with a few task-specific demos [2, 3, 50]
and extends to non-dexterous manipulation scenarios [51, 52].

III. OUR ROBOT HAND HARDWARE

We will bring at least 6 examples of 3 different low-cost,
fully open-sourced, dexterous anthropomorphic robot hands to
RSS 2024 for our demonstration. In this section we describe
all of our low-cost ( $2000), strong, easy to assemble and
repair, open-source anthropomorphic dexterous robot hands
that attendees will be able to interact with.

A. LEAP Hand

LEAP Hand is an affordable, dexterous, and anthropo-
morphic hand designed for machine learning research which
was presented at RSS 2023. Setting it apart from previous
models, LEAP Hand incorporates a groundbreaking kinematic
structure, ensuring maximum dexterity irrespective of finger
pose. With a low assembly cost of 2000 USD and a four-
hour assembly time using easily accessible components, LEAP
Hand consistently performs over extended durations. Notably,
LEAP Hand outperforms its closest competitor, the Allegro
Hand, in all conducted experiments, while being only 1/8th
of the cost. We have made detailed assembly instructions, the
Sim2Real pipeline, and a development platform with valuable
APIs accessible on our website at http://leaphand.com .

1) Kinematic Structure
Hands that are directly driven traditionally face limitations

in kinematic structure due to the need to house motors within
fingers, preventing precise imitation of the human hand. Hinge
joints, like the PIP and DIP joints, can be easily modeled with
a single actuator each. However, ball joints present a challenge
and are typically approximated using two motors (MCP-1,
MCP-2) positioned closely together, as noted in [53].

http://leaphand.com


Fig. 4: We can extract different types of data from human motion. In our papers such as DEFT [3], we produce three priors from human
videos: the contact location (top row) and grasp pose (middle row) from the affordance prior; the post-grasp trajectory (bottom row) from a
human demonstration of the task.

Prior work have introduced two designs to address this
challenge (see Fig.3). Both the Allegro and LEAP-C Hand
designs, however, sacrifice one degree of freedom either in the
extended or closed position. Allegro exhibits reduced dexterity
when extended, while LEAP C-Hand (similar to C-Hand in[53])
is less dexterous when closed.

The common reason for this loss of dexterity in both LEAP C-
Hand and Allegro is the fixed axis of the motor responsible for
adduction-abduction (MCP-2) to the palm of the hand. In LEAP
C-Hand, this axis is perpendicular to the palm’s plane, while
in Allegro, it lies in the plane of the palm. Consequently, when
the finger aligns parallel to this axis, the degree of freedom
becomes ineffective as seen in 3 In LEAP Hand, a novel
universal abduction-adduction mechanism is proposed for the
fingers, allowing them to maintain all degrees of freedom at all
MCP positions. Instead of fixing the MCP-2 axis to the palm,
the innovative approach brings the axis to the frame of reference
of the first finger joint, ensuring it remains perpendicular to
it at all times. This design enables adduction-abduction in all
positions (Fig. 3), providing LEAP Hand with versatility in
both the extended position (similar to LEAP C-Hand) and
pronation/supination in the flexed position (similar to Allegro).

B. DASH Hand

Oftentimes, the rigid structure of a robot gripper undesirable.
The rigid contact with objects can lead to poor grasping
abilities and brittle fingers. Underactuated soft hands promise to
adaptively conform to the surface of objects without the explicit
need for complicated feedback systems. [54] Soft manipulators
could tightly grasp around an object and provide good form
closure without breaking the object within it, similar to how
humans use their hands.

How can we simplify the design of a robot hand to achieve

this easily? We adopt a straightforward method by 3D printing
soft TPU fingers as a single piece using a standard 3D printer.
We thread four tendons through the finger, connecting them
to three motors with pulleys. Two tendons are linked to the
ends of one pulley, regulating the MCP side-to-side movement
of the finger. Another tendon is directed to control the MCP
forward motion. The last tendon controls the curling action of
the PIP and DIP in the final two flexure joints of the finger.
This approach makes the actuation of a soft TPU finger easily
attainable.

A key issue with soft robotics hand is how to control them.
First, we tension the fishing line tendons which finds the
limits of motion that the motor can reach. Second, we must
know where the fingertip/end-effector is relative to the motor
position. To do this, we collect data of motor angles paired
with fingertip positions from an AR tag. We then train a small
model which can predict this position open-loop accurately
even under deformation.

An additional noteworthy observation is that the form factor
of the DASH hand more closely resembles a human-sized
hand. This configuration places motors in the wrist, with power
transmitted forward using fishing-line tendons, mirroring the
way humans utilize tendons to connect arm muscles to parts
of their hand. See videos of DASH hand on our website.

C. LEAP Hand v2

LEAP Hand v2 seeks to most closely replicate the human-
hand while still being inexpensive, reliable and easy to produce.
It features three pivotal elements crucial for unlocking key
capabilities in robotic manipulation. Firstly, our innovation
involves the introduction of 3D-printed multi-material fingers
that closely mimic the stiffness, softness, and durability of
human fingers. This characteristic enables our robotic hand

https://dexterous-finetuning.github.io/
https://dash-through-interaction.github.io/
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Fig. 5: To learn from human motion, we must retarget the human hand motion to the robot hand and arm. This is done in Robotic Telekinesis
and Videodex by tracking the hand and wrist in the video, retargeting them using an internet-video learned retargeting method and then
tracking the camera motion using SLAM. [1, 2]

to exert robust forces while maintaining compliance when
required. Secondly, we introduce an agile palm with integrated
joints meticulously designed to replicate the conformal qualities
of the human palm which a feature often lacking in many
robot hands but one we consider essential. Our robotic hand
effectively utilizes its articulated soft palm for adept grasping,
stabilizing, and supporting objects, providing critical opposition
from the thumb to the rest of the hand. Thirdly, we design our
robotic hand with finger kinematics that maximize dexterity
and similarity to a human hand. The Metacarpophalangeal
(MCP) joint is engineered for strength and enhanced flexibility
compared to a human hand, while the Proximal Interphalangeal
(PIP) and Distal Interphalangeal (DIP) joints are articulated
with a single fishing line tendon, replicating the articulations
of the human hand.

Our demonstration will showcase the hand’s strength, dex-
terity, durability, and suitability for the demands of machine
learning research. Significantly, our robotic hand can be fully
3D printed and assembled in a few hours by a novice roboticist
using components costing less than $3000. We believe this
hand will serve as a robust starting point for numerous
labs embarking on their journey into dexterous manipulation.
Demoing it with bimanual teleoperation will further help
attendees get familiar with the hand.

IV. OUR ROBOT LEARNING METHODOLOGIES

We will bring 6 physical robot hands to show these robot
learning methodologies. First, teleoperation using Mocap gloves
will be available for attendees to experience on our two
physical robot arms and our open-source Mocap setup. Next,
our demonstration will show how to use human experience to
improve our policy’s training distributions. This will be shown
through teleoperation from human video and autonomous
policy rollouts on the robot hands. Third, we will show
how to continually improve these policies through real-world
experience and sim2real training.

A. Learning from Human Mocap Glove Demonstrations

In conventional 2-finger gripper manipulation many teleoper-
ation setups have worked successfully to collect demonstrations
for behavior cloning. Kinesthetic Methods such as ALOHA
[55], GELLO [56] or Da Vinci machines [57] can work
accurately. With VR or camera-based hand tracking, methods
such as [58] work reasonably well.

However, it is unclear how to scale these methodologies to
robot hands. In this part of the demo, we are developing a
mobile system that we can bring to RSS. This will use two
robot arms and an open-source Mocap glove teleoperation
setup and our robot hands. Participants will be able to
teleoperate LEAP v2 using the motion capture system to get
hands on experience. Attendees will have a variety of tabletop
tasks and objects that they can try to manipulate and teach the
robot how to do these tasks. We will provide information on
our open-source pipeline and how to build this system.

Using this system, we can train behavior cloning policies to
complete a variety of different tasks that during the event such
as tool use or soft manipulation. We will show these policy
rollouts, augmented with human-video pretraining on our robot
hands.

B. Learning from Human Video

Collecting these demonstrations can be expensive and time-
consuming and it is impossible to collect data in all the possible
scenarios that the robot will see. This will lead to a distribution
shift, where the robot’s testing environments will be inevitably
different from its training environments. While one could argue
that robots could adapt or generalize to unseen scenarios, this
is not a guarantee. How can we make our training set larger
without collecting more teleoperated data?

Because the robot hand is in a similar embodiment and
kinematic structure to the human hand, they will both naturally
interact with the world and complete tasks in a very similar
way. To leverage this similarity, we can learn from large-scale
human motion in human video and motion capture datasets.
We find that the kinematic similarity between the human and



Fig. 6: We will demonstrate real robot hands doing teleoperation from VR glove and teleoperation from human video as
developed in [4, 1, 6]. We will build a special version of the VR teleop system for the RSS 2024 demo that will be mobile and
compatible with any arm that will be open-sourced if this demo proposal is accepted.

robot hand leads to this method being very effective. In this
part of the demo, we will show videos of how to use human
hands and motion to improve robot hand behavior.

Our first challenge is in teleoperation in real-time to a
robotic hand. This conversion to the robot hand is particularly
challenging due to the underconstrained nature of the problem,
as the Allegro hand and the human hand possess numerous
degrees of freedom (DOF) and exhibit substantial differences
in shape, size, and joint structure. The retargeting process
must cater to any human operator attempting to execute
various tasks in diverse environments. Additionally, an essential
criterion is the efficiency of the solution, demanding a real-
time performance at a rate exceeding 30 Hz. In Robotic
Telekinesis [1] from RSS 2022, we develop a video-to-robot
hand retargeting system that is trained from a corpus of rich and
diverse human hand videos. The system understands human
hands and retargets the human video stream into a robot hand-
arm trajectory that is smooth, swift, safe, and semantically
similar to the guiding demonstration. This methodology has
a few stages. First, we detect the human hand in the image
by using a state of the art hand detector such as FrankMocap.
[59] Then, we retarget this robot hand pose using a NN trained
on an energy function and human data. This ensures that the
retargeted robot hand poses are human like and semantically
similar to the human hand demonstration. For the arm, we
track the trajectory of the moving camera and convert that
trajectory to the world frame. These elements are combined
together to teleoperate the robot hand and arm. See Figure 5
for further details.

In VideoDex, we would like to use internet videos to directly
aid in learning policies. To do this, we use a similar pipeline
on EpicKitchens data [60] and retarget it from the human
embodiment to the robot embodiment. This process makes
human data in the same format as robot embodiment data.
This unlocks the ability to easily teach robot embodiment from
human videos.

In DEFT, we aim to achieve efficient and generalizable
dexterous manipulation by learning from human videos and real-
world fine-tuning using only a few samples. [3] The approach
first trains a learned affordance model from human videos,

extracting information such as grasp location, grasp pose, and
task specifics for each task. This means that the model can
output human-like hand poses from image inputs alone.

To demonstrate this line of work, attendees will be able
to teleoperate our robot hands from a single monocular
camera similar to Robotic Telekinesis from RSS 2022. They
will also be able to observe autonomous policy rollouts
pre-trained from human video data on pre-recorded videos
and on our real robot.

C. Reinforcement learning

While these internet videos in DEFT can provide good
policies on their own, how can robotic systems utilize this
to continually learn and improve from experience? In prior
work, it is found that learning is often sample-inefficient in the
real-world and one must find ways to learn efficiently. [44, 45]
The unique part of robot hands is being able to effectively use
this human prior experience as a prior for robot hand behavior.

Because the policy does not work zero-shot from internet
videos, a fine-tuning procedure is introduced. A residual policy
is learned to improve upon the affordance model’s predictions.
It explores nearby behaviors in the real world, refining the
robot’s grasp behavior. This is a real-world reinforcement
learning setup, where the policy is rewarded based on task

Fig. 7: Sim2Real transfer. Left: Simulated LEAP Hand in Isaac
Gym [61] completing an in-Hand manipulation task. Right: LEAP
Hand completing the same task in the real world. This will be demoed
at RSS 2024. Please see our website https://leaphand.com for our
open source pipeline and the paper [4] for further details.

https://leaphand.com


completions. These rewards can come from a VLM or from
hand labelled human rewards. The system is tested using a
variety of kitchen tasks and the results improve the robot’s
manipulation capabilities through the fine-tuning process. [3]

In Dexterous Functional Grasping, we combine internet data
and large-scale simulation training for real-world grasping
that can generalize to a wide variety of objects. First, an
affordance model is used to predict a functional pose for the
hand, considering the intended use of the object. The pre-
grasp pose is determined by matching DINO-ViT features to
affordance masks obtained from annotated internet images.
Sim2real training with an eigengrasp action space, derived
from a mocap dataset, is used to restrict the action space to
physically realistic hand poses. The reward function for training
the policy incentivizes the pickup of objects and ensuring a
firm grasp. [6] This demo will have our fully open-source
sim2real in-hand reorientation of a cube example on a real
LEAP Hand on display. This is similar to our successful
RSS 2023 demo. This demo has been recreated by 100s of
people using the LEAP Hand since launch last year. We
will also have videos of sim2real and real-world learning on
our hand and arm based system doing dexterous grasping.

V. CONCLUSION

In this submission, we propose an upcoming robotics
demonstration at RSS 2024. It will be an engaging and
insightful experience, featuring hands-on real robot demos with
six different robot hands and two robot arms. The showcased
robot hands include LEAP Hand, known for its popularity and
open-source nature [4]; DASH Hand, a soft, tendon-driven
robot hand with three degrees of freedom per finger[5], and
the LEAP Hand v2, the smallest and strongest open-source
robot hand with 3D printed fingers. The demonstration will
show these hands doing three key robot learning paradigms:
Motion Capture Teleoperation, Learning from Human Video,
and Real-world and Simulation-based Reinforcement Learning.

Attendees will have the opportunity to teleoperate all three
robot hands using a newly developed open-source mocap
system. Additionally, the demo will illustrate the utilization of
human hand data for training robot hands and showcase real-
world and simulation-based reinforcement learning, including
sim2real policies performing various behaviors. The goal is
to demystify the field of dexterous manipulation and inspire
robotics researchers to incorporate open-source dexterous robot
hands into their projects. The demonstrated methods and
hardware instructions are open-sourced or will be by RSS
2024. We will develop a unique aspect to this demo: a mobile
bimanual teleoperation system and new sim2real results that
will be open-sourced after the demonstration at RSS 2024. We
hope that these demos inspire researchers to begin their journey
in dexterous manipulation research. There are many areas of
research, both task-driven and methodology-driven that can
significantly benefit the field.
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