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Abstract—In this paper, we introduce a pioneering end-to-end
system demonstrated on a team of robots and sensors, designed to
augment scientific exploration and discovery for human scientists
in remote or inaccessible environments. We demonstrate and
analyse our system’s capability in a mock-up test-bed scenario.
In this futuristic hypothetical scenario human scientists located
in a controlled lunar habitat, are assisted by a team of robots
in investigating an unknown seismic phenomena like moon-
quakes or meteor impact detected by a sensor network deployed
on the lunar surface. They do so by autonomously collecting
data, providing contextual semantic information and collecting
scientific sample for future analysis upon the direction of humans.
This work is among the earliest to present a feasible way to
integrate large foundational models (LFMs) into field robotic
deployment, enabling easy semantic and contextual understand-
ing of the objects in the environment and natural language-
based interactions with the robot for the scientist. In addition
we bring together state-of-the-art techniques in mapping, object
detection, navigation, mobile manipulation, soft grippers, event
detection and present details of the integration, insights and
lessons learnt from the deployment. While demonstrated in a
limited setting in a mock-up environment with ground robots,
the system architecture and approach presented in this paper is
easily generalised with domain-specific customised components
and robots for a variety of event-driven scientific discoveries e.g.,
geological survey, biodiversity study or underwater environmen-
tal sampling.

Index Terms—Field Robotics, Event-detection Sensor Net-
works, Scene understanding, Mobile manipulation, Human robot
interfaces, Foundation models

I. INTRODUCTION

Scientific data collection from the field is one of the
most critical first steps that enables scientists to study and
solve complex problems and reach groundbreaking discover-
ies. Emerging AI-integrated robotic technologies can play a
crucial role in providing scientists with important assistance
in scientific field data collection. In this paper, we present a
demonstration of a field robotic sample collection system that
takes human input and performs an autonomous human-in-
the-loop investigation and sample collection task in the space
exploration domain.
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Fig. 1: Our motivation for this demonstration paper is to
present results on our analysis of moving away from human
heavy sample collection for scientific discovery to robot-aided
scientific sampling. (a) Shows Apollo 16 astronaut John W.
Young collecting lunar samples with a scoop (credit: NASA).
The vision of a human scientist focusing on higher level
scientific analysis while directing a fleet of robots in the field
to perform sample collection or exploration is captured in an
artistic image in (b) (credit: OpenAI). Our work mocks up such
a vision in a concrete demonstration where human scientist in
(c) interacts with a fleet of remote robots from a base station
giving it natural language commands. The two robots used in
the demonstration, Explorer and Collector, are shown working
together in the bounded sandpit amidst mock-up boulders in
(d).



A. Demonstration Scenario

For this demonstration, we created a futuristic hypothetical
scenario of a fleet of robots operating on the lunar surface, with
the human scientist performing experiments in a lunar habitat.
Sensors akin to NASA’s Apollo-era lunar seismic detectors,
placed to study the sub-terranean structure via measurement
of moon-quakes and meteor strikes are expected to be de-
ployed [23]. Our futuristic scenario goes further in imagining
a situation where the scientist (either on Earth or on a lunar
base) is able to investigate a seismic phenomenon due to the
availability of a fleet of heterogeneous robots on the lunar
surface. Upon being informed of an unknown seismic event,
the scientist without the need for doning a spacesuit herself
to investigate and collect samples (like prior Apollo missions
Fig.1(a), interacts with an AI driven autonomous system to
send specific robots for closer inspection and sample collec-
tion. An artist’s imagined scenario is captured in Fig.1(b). Our
demonstration mocks up this scenario using existing and novel
system components like the base-station Fig.1(c) and a fleet
of field deployable robots and sensor networks Fig.1(d).

The scenario of lunar seismic event based investigation
was selected for its encapsulation of the most formidable
challenges inherent in both robotic deployment and scientific
exploration. While on one hand it addresses the open scien-
tific questions surrounding extraterrestrial and lunar geology,
it also exposes the inherent nature of these operations de-
manding significant reliance on autonomous robotics due to
the logistical and environmental constraints of extraterrestrial
settings. Furthermore, this demonstration tackles the critical
issue of optimizing valuable human crew efforts, which are
often expended on non-scientific tasks, thereby enhancing the
efficiency and scientific yield of these missions [34].

B. Impact of this demonstration study

When space scientists collaborate with carefully designed,
appropriate AI-enabled robotic technologies, they can benefit
from delegating tedious physical processes to agile and robust
robots without being exposed to harsh conditions and also
collect samples from hostile environments that they cannot
reach by themselves [35]. Involving robots on-board decision-
making abilities in sample collections also increases the pre-
cision of sample collection (e.g., in tracking the location
of collected samples) [15] and speeds up the process of
documenting samples with contextual information (e.g., using
automatically captured real-time video/audio) [15]. Further-
more, AI-based naturalistic interactions and other AI-based
features incorporated into those robotics systems can enable
scientists to arrive at well-informed decisions efficiently by
optimising their time and attention on their capacity to analyse
robot-communicated complex information and make decisions
based on their domain expertise and guide robots in real-time
for collecting productive and appropriate samples [35]. Using
robots to navigate risky environments and physically collect
samples, while receiving supervisory support from scientists
to choose appropriate samples, reduces the physical strain
and cognitive load on scientists. This is in comparison to

to trials that engage robots by overloading the human with
teleoperation control of the robot [26, 24] or other low-level
technical duties, resulting in situational awareness latencies
on other important tasks [36]. Therefore, this approach allows
scientists to best use their time on higher-priority tasks like
performing scientific analysis or experimentation that require
their domain expertise. Further, since this approach optimises
the usage of complementary skills of scientists and robots,
extending the capabilities of both parties and achieving sample
collection missions that they cannot complete alone [11]. In
turn, it expedites scientific research and exploration.

While we present a mock up scenario of an event aligned
with a lunar rover, the systems approach and the underlying
components are widely applicable to a variety of other do-
mains, including marine sampling of sea grass [3], biomaterial
sampling for bio-diversity studies or rare/novel species detec-
tion using DNA analysis, event based detection of the spread
of pests or diseases in an agricultural field among many others.

Our system expands prior work in presenting an end-to-
end pipeline that specifically focuses on human scientific
exploration. This is achieved through the active involvement
of our scientists in interacting with the robots, allowing them
to gather semantic contextual information from the area of
interest and leverage state-of-the-art foundation models. Ad-
ditionally, we are showcasing this demonstration using robust
field-deployed robots. As a result, our framework allows us to
seamlessly integrate a combination of higher-level reasoning
and low-level perception and control.

This demonstration paper presents the following main con-
tributions:

• Presents an end-to-end autonomous system for event-
driven human scientific exploration, investigation and
discovery, enabling human scientists to best use their
domain expertise skills.

• Demonstrates a feasible way of integration of large
foundational models (LFMs) in the loop of field robotic
deployment, enabling easy semantic understanding of the
objects in the environment and natural language-based
interactions with the robot for a remote scientist.

• Presents learning on integration challenges and insights
into systems development, event detection, semantic
visual mapping, field mobile manipulation, navigation
and human-robot interaction during the deployment that
would be extremely valuable to the scientific community
to design better systems in the future.

II. SYSTEM DESCRIPTION

A. Robotic and Sensing hardware

The autonomous system used in this deployment consists of
seven vibration sensors, two robot agents and a base-station
computer used for operations. The two robot agents are both
customised BIA5 OzBot All Terrain Robots (ATR) [17] desig-
nated, in this paper, as Explorer and Collector which addition-
ally has a robotic manipulator arm. Both Explorer and Col-
lector made use of CSIRO CatPack perception payloads [13],
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Fig. 2: This figure describes the overall pipeline of the demonstration performed. In the offline phase the robots explore the
area of interest and impact sensors are placed. Upon detection of the impact event, the system interacts with the human using
natural language to decide on the tasks to be performed. The robots then perform specific tasks autonomously at the scientist’s
request. A video of this demonstration is included in the supplementary material.

which run Wildcat SLAM software, and separate autonomy
compute systems running CSIRO NavStack software, a multi-
agent autonomy and navigation solution. Collector also was
fitted with a Franka Emika Panda 7 axis robot arm, which was
used for mobile manipulation and sample collection tasks.

The user base-station was networked to both robot agents
using a communications mast installed with a Rajant Bread-
crumb Peregrine node and a Rajant Breadcrumb ES1 node
installed on each agent. The Rajants provided a layer 2 mesh
network using wireless (2.4 GHz and 5.8 GHz) 802.11 radio
links [17].

Sensor networks can facilitate event-driven sample collec-
tion missions by continuously monitoring the mission area
for detecting events of interest. Once an event is detected by
the sensor network, robots can be guided to optimal sampling
locations using the estimated location of the event.

To identify optimal sampling locations triggered by an
impact event, a sensor network consisting of 7 sensor nodes
designed to sense vibration was deployed on the sandpit

as illustrated by Figure 3(c). Each sensor node has an
XIAO Sense board with the Inertial Measurement Unit (IMU)
LSM6DS3TR-C and is powered by a battery. To better capture
the vibration signal in the sand, the sensor node hardware
amplifies the signal using mechanical amplifiers. The base of
the sensor is a wooden plate measuring 45cm x 30cm buried
20cm under the sand. The wooden plate is intended to capture
as much of the vibration signal as possible. A metal beam,
50cm in length, is mounted orthogonally on the base and
protrudes from the sand. The base transfers the vibration onto
the beam, which works as a lever amplifier. At the top of
the beam, a watertight enclosure houses the electronics. The
sensor is mounted on a lever amplifier in the enclosure to
further amplify the analog signal.

B. Multi-Robot Autonomous Navigation and Exploration

The mutli-robot navigation system fielded in this demon-
stration, called NavStack, is built upon capabilities developed
during the DARPA SubT challenge where fleets of robots



(a) Explorer robot configuration (b) Collector robot configuration (c) Vibration sensor node

Fig. 3: Physical robot and sensing hardware components. More lower level component details can be found in [13]. Note that
while the robots had GPS module, it was not used for localization and navigation.

Fig. 4: Data flow pipeline used in local navigation module for
CSIRO NavStack

explored and mapped subterranean environments [17]. Key
capabilities of the DARPA SubT system reused were local nav-
igation, autonomous exploration, topological mapping, global
navigation, executive control and monitoring. An improved
path planning algorithm was added to the system in order meet
constraints set by the lunar exploration scenario. The local nav-
igation functions eases human workload by automating obsta-
cle detection and avoidance. Autonomous exploration reduces
cognitive workload by facilitating time efficient exploration
coverage of the region of interest. Topological mapping and
global navigation enabled an efficient return to the region of
interest by the Collector robot and traversal between the points
of interest. Reducing cognitive load on robot operators allows
them to manage more tasks therefore reducing the number
of humans required. In a lunar exploration setting, requiring
fewer people reduces the cost to conduct experiments. Efficient
path planning is also important due to the limited time and
energy budget robots have on the moon.

Central to NavStack is the CSIRO WildCat Simultaneous
Localisation and Mapping (SLAM) software. WildCat soft-
ware executes directly on the CSIRO CatPack perception hard-
ware producing local odometry, multi-agent global localisation
solutions and processed lidar sensor readings localised into the

odomotery solution’s frame of reference. In this application,
the CSIRO NavStack software uses WildCat exclusively as in-
puts to its navigation and autonomy calculations. The Graphics
Processing Unit (GPU) based Occupancy Homogenous Map
(OHM) software tool is employed by NavStack to process
lidar and localisation data creating an occupancy map and
heightmaps. Special to the height maps provided by OHM are
heightmap layers which include Autonomous Ground Vehicle
(AGV) specific three dimensional mapping data, allowing
AGVs to plan paths over overpasses and under underpasses.
NavStack processes heightmaps into cost maps which are
used by a local navigation software to move robots to goals
set by the executive software. Local navigation consists of
a hierarchy of path planners that perform navigation and
obstacle avoidance within the immediate area of the robot and
a selection system to choose the most suitable planner for
the navigation goals presented. NavStack can receive multiple
control inputs, including from the path planners, and uses a
prioritized behaviour compositor to determine which input has
priority to actuate the robot. The global navigation solution
is a graph based representation of simplified traversability
information that represents a topometric map (Topomap or
Topo). Topomap is built on the mutlit-agent global localisation
solution provided by WildCat and Topomap data can be
shared amongst the robots on the system either by saving for
reuse later or real-time sharing using the communication layer
protocol developed for the DARPA SubT challenge (codname
“Mule”). The global navigation solution also detects areas
yet to be visited (frontiers) converting them to exploration
tasks so that the robot can return to unexplored areas. Finally,
at the highest level of the system, the executive software
receives navigation way points or high level tasks through
a human machine interface or programatically from other
systems. Figure 4 illustrates the organisation and flow of data
through the subsystems of NavStack.

Due to the limited scale and scope of the scenraio pre-
sented, only exploration using a single AGV has been demon-
strated. Based on CSIRO’s prior work in DARPA SubT,
more Explorers can be added including multi-modal AGVs
(wheeled, tracked, legged) as well as aerial platforms. The
task bidding system used in the DARPA SubT challenge [25]



will be employed to efficiently distribute exploration tasks
between agents For subsequent Collector operations a new
task can be introduced and again the task bidding system
used to efficiently distribute the tasks amongst agents. As
an extension to the task-bidding system, multi-point route
planning software can be created to optimise the tasks won by
individual agents. A knapsack style minimum cost, maximum
value algorithm can be implemented for task prioritisation or
potentially a Travelling Salesman Problem heuristic solver,
such as Christofedes algorithm [6] can be used for scenarios
where locations of all detections must be visited.

Navigating on granular materials is challenging both on the
traversability challenges as well as local controllability issues.
Our tracked vehicles are able to surmount the granular slippage
due to their higher area of contact and did not get stuck in the
terrain. However the goal tolerance and body posing was often
not sufficient to perform a pick. This requires the development
of a local search planner to bridge the gap between the coarse
navigation goals with the fine body positioning required for
sample collection.

C. Semantic Understanding Pipeline

Semantic mapping is a process of building a map that
contains the semantic meaning of the objects in the en-
vironment. The constructed semantic map helps the robots
understand the environment better, in addition to the colour
and geometry captured from the sensors. The map can benefit
robotics navigation and route planning by providing cues of the
objects in the scene. The semantics of objects can also provide
prior knowledge for the manipulator to choose the optimised
approach to interact with and grasp the target objects. Finally,
the semantic embedding space empowered the search and
reasoning for complex queries. As illustrated in the Figure
5, the semantic label generation process utilises pre-trained
Large Foundation models (LFM), which significantly reduces
the human effort to annotate a large amount of data and
are able to be generalised to various use cases. During the
semantic labelling process, the raw images captured from the
robot camera are first processed with off-the-shelf open-set
auto-tagging model, Recognize Anything Model (RAM [42]),
to provide abundant textual annotations for every image. Next,
the grounding model GroundingDINO [21] is adopted to locate
the objects that appeared in the images. The grounded object
bounding boxes are then forwarded to a zero-shot segmenta-
tion model Segment Anything in High Quality (SAM-HQ [16])
to obtain fine-grain segmentation masks. The semantic patches
of the given image are then encoded by a cross-modal encoder
CLIP [29] into embeddings, hence the vision and language
embeddings are in the same feature space for cross-modal
search. The semantic masks from 2D images are projected
into the 3D space using lidar measurements and an estimate
of the robot pose. Finally, the projected embeddings associated
with the semantic masks in a 2D voxel grid are summed and
renormalised; this procedure amounts to estimating the mean
direction of a von Mises-Fisher distribution generating the
samples in each 2D voxel.

The semantic voxel map stores detailed information about
objects and their surroundings. For illustration, an example
semantic map is shown in Figure 6. In each grid of this
voxel map, an accumulated 768-dimensional CLIP embedding
is stored to capture the visual features of that location. During
the process of locating specific objects at inference time, e.g.,
“big white rocks”, the module extracts the CLIP embedding of
the given query and compares it with the stored embeddings
in the semantic map. The Figure 6(c) demonstrates that the
areas matching the query are confidently highlighted in yellow,
while the surrounding sand surfaces are coloured with dark
shade. In addition to testing semantic mapping on the lunar
testbed (20×20m), large-scale mapping was also conducted on
CSIRO’s QCAT site, which spans approximately 500×600m,
as shown in Figure 7. The mapping results provide a com-
prehensive overview of the semantics of the entire site, and
clearly demonstrate the scalability of the proposed semantic
understanding pipeline.

In addition, drawing inspiration from vision-language
grounding [22] [18] [4], we further infuse a richer layer of
semantic information into our mapping process, which will
form a scene graph. This approach diverges from conventional
object detection and segmentation by placing a stronger focus
on the attributes of objects and their spatial interrelations,
articulated through natural language. More specifically, by em-
ploying pre-trained LLMs (with vision capability) and prompt
engineering techniques, we create associations for each object
in a 2D scene with its distinct attributes, including shape, color,
size, and material. In these 2D environments, we also extract
and analyze the spatial relationships between adjacent objects.
This rich semantic layer enhances the context-awareness of
natural language interactions, facilitating precise entity local-
ization and object manipulation. The goal is to enable our
system to not only recognize objects but also comprehend their
broader contextual significance, leading to more intuitive and
effective human-robot collaborations.

The current deployment for LFMs and semantic mapping
pipelines is running on a desktop machine equipped with a
Nvidia GeForce RTX 3090 GPU ( 36 TFLOPs, 24GB vRAM).
As for perception pipeline, a Jetson Xavier AGX was used to
process the point cloud data. Despite the current deployment
being on a desktop machine, it is feasible to adapt the main
component for more efficient deployment. There are efficient
implementations for the components used in the semantic map-
ping. For example, in the segmentation pipeline, the powerful
segmentation module SAM has a few lightweight counterparts
such as MobileSAM [41]. The smaller MobileSAM effectively
replaces the original ViT-H encoder (632M parameters) with a
significantly smaller Tiny-ViT (5M parameters) that is capable
of operating on edge AI devices.

D. ImpactSense: Event Detection

Distributed sensors provide an additional layer of informa-
tion as part of the holistic representation of the physical world
to facilitate the robot’s interaction with it. In this demo, Inertial
Measurement Units (IMU) are used to detect impact event and
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Fig. 5: Workflow of offline semantic map generation. In this pipeline, the 2D semantic masks are firstly extracted from the
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Semantic map generated from 3D data  Query map: big white rock

Fig. 6: Visualisation of semantic mapping. (a) 3D mapping of the sandpit from the top-view angle. (b) A visualisation of
the voxel semantic map, coloured by the most-related label from the text corpus. Each grid is encoded with a 768-dim CLIP
embeddings. (c) A result query map given the query “big white rock” (highlighted in yellow)

subsequent robot presence. In real-life, this contributes to the
tracking of the robot’s trajectory and behaviour for validation
and safety purposes, and to the optimisation of task planning
for the robots.

To detect impact events of interest, a threshold-based time-
domain vibration analysis method was used. The threshold
was calibrated to be sufficiently high to discern a simulated
impact event while ensuring that routine activities (such as
the movement of rovers and robots) would not be mistakenly
identified as impact events. The locations of the sensor nodes
detecting an event are shared and an impact-zone is identified
and sent to the autonomous robotic navigation system for
local region inspection and sample retrieval. For seismic event
detection based on the time-domain analysis of the vibration
signals, we use a detection threshold of 0.2g. Based on the
application requirements, constraints, and sensing capabilities,
different event-detection methods can be utilised (see [8] for
a review of event detection in sensor networks.

It is worth noting that the same principle can be ap-
plied to other types of sensors as well as sensor-based

events, such as sudden temperature/humidity change from
temperature/humidity sensors, or presence detection through
infrared/radar-based presence sensors. As a generic pro-
cess, sensor data streams and events are then fed into the
LLM/planner to optimise the robot’s task planning specific
to the use case.

E. Natural language interface with Robots

An interface based on natural language enables users to
interact with complex systems with minimal prior knowledge
or specific training using the platform. Large language models
in the interaction pipeline also unlock a level of complex
reasoning and semantic understanding that is otherwise very
challenging to encode. This section describes the natural lan-
guage pipeline used to interface with the various subsystems
in this deployment, facilitating a seamless interaction with a
domain expert unfamiliar with the system interface.

The natural language pipeline in use was initially designed
for search and rescue operations within the SubT challenge and
then repurposed for the presented “Seismic event” mock-up



Fig. 7: Visualisation of a large-scale semantic map of the
CSIRO’s QCAT site, coloured by the most-related label from
the text corpus. Each point is encoded with a 768-dim CLIP
embeddings.

demonstration with further improvements. In search and rescue
scenarios, operators are trained extensively and require a level
of trust in the autonomous operations of the system [32].
Through the SubT challenge [17], a graphical interface was de-
veloped for a single expert human supervisor to oversee a fleet
of robots in subterranean environments. The interface offers
several levels of autonomy from teleoperation to full out-of-
communication autonomy [5]. However, language has emerged
as a preferred modality for interacting with robots, particularly
for users unfamiliar with the interface, providing system status
with plain language queries and enabling advanced reasoning
afforded by large language models [30, 37, 19]. For our
SubT fleet we developed a natural language interface, named
“Squawk” [1], consisting of a speech-to-text interface, GPT
module with a prompt to interpret user speech input and output
formatted code that can be executed by robot.

The speech-to-text interface uses the large-v3 model
from the Whisper API1. Written in C++, the speech interface
runs comfortably on a mid-range laptop. The wake word “Hey
Squawk” initiates dialogue with the system using a model
provided by Picovoice2. Alternatively, the user can initiate an
interaction from a keyboard press. Once a query has been
parsed, the response from the GPT query is displayed on the
screen and converted to audio using the Piper text-to-speech
model3.

The Squawk interface builds on work using LLMs that
take user queries and outputs formatted code that can be
executed for robot control [37]. We use GPT-44 with a crafted
prompt for in-context learning that contains sections including
an assistant role, available functions, 3D scene graph and

1https://platform.openai.com/docs/models/whisper
2https://github.com/Picovoice/porcupine
3https://github.com/rhasspy/piper
4https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

example interactions (Fig. 9). The assistant role is informative
of the persona to be adopted and conditions GPT on the
expected performance for the task. The functions GPT can
call are described in typical Python syntax and are commented
accordingly. The scene graph and available agents are inserted
into the prompt at the time of inference and describe which
robots are active as well as semantic labels and their associated
poses. Figure 8 shows the key user requests for the demo
outlined in this paper and the responses generated by GPT.
The generated functions are parsed within a ROS1 Python
system and the associated actions are executed on the robot
fleet. More details of Squawk can be found in Bennie et al [1].

The interface provides full access to the multi-agent navi-
gation system, including initiating full-autonomy exploration
operations and navigation to, and storing semantic landmarks.
The user also has full access to the system information of all
deployed robots and can perform intuitive GPT queries from
the same interface. Whilst the available functions provided to
GPT are simple, they can be utilised by GPT in interesting
ways. For example, simply commanding ”Gather all robots at
Explorer’s location” can send an arbitrary number of robots to
Explorers position. Commands such as ”Have Collector patrol
in a 5x5 square” will chain together commands to complete
this geometric based path.

For the demonstration presented in this article, the robots
support an astrogeologist in the collection of rock samples
(Fig. 14(c)). Through Squawk, the domain scientist can specify
commands to the robot team in a flexible and intuitive way,
without experience and with minimal guidance. First, the
Explorer robot is instructed to go to the operational region and
provide a coverage map of the area. With the shared map, the
Collector robot is instructed to go to impact zone, as identified
by the ImpactSense component, to investigate and collect a
specific sample type (e.g. a small dark rock). The scientist
can at any time query the status of the mission or discuss
science outcomes with a GPT instance.

F. Local Region Investigation

Upon receiving a command ”Go to Impact Zone” from the
scientist, the collector autonomously proceeds to the impact
region. Upon reaching the region the robot is able pose its
wrist camera towards the region of interest to investigate and
provide closeup images to the scientist. This view coupled
with the semantic information of the region available to the
scientist allows her to decide on whether to collect a sample
of interest.

Upon recieving a request for sample collection, locating the
sample for collection occurs in two stages. Once the robot
has navigated to a pose near where a sample is expected
to be found, an initial search is performed. The manipulator
targets the wrist-mounted camera at the point of interest,
and the object detector is queried. When a target sample
has been identified, fine localisation is initiated. The robot
uses the holistic control method described in Section II-G to
move the camera to a pose 0.6m directly above the identified
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Assistant Role: 
You are an intelligent and friendly virtual assistant. 
You are helping a user control a fleet of field robots.
…

Active Robots: 
{current_agents}

Available Functions: 
# Use Text to Speech to reply to the user with informative and useful content 
reply(reply: str) 
# Send a robot to a position (x, y, z) tuple. 
This should be inferred from the User request and the 3D Scene Graph 
go_to(position: tuple, RID: str)
…

3D Scene Graph: 
{scene_graph} 

Object Class Count: 
{observed_object_count}

Examples:
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You are an assistant that uses Python code to perform actions and respond. 
Use the list of available functions to make function calls to best serve the 
users request. You must only respond with a sequence of function calls.

User:
{user_input}

Fig. 9: Summary of the GPT prompt
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Imaging Server

Text
Image
Voice
Gesture

AR Device/s Inputs

Model OutputsSituated image Situational
Imaging Process

Labelling

Generating

HighlightingVoice recognition,
LLM

Open Vocab Detection
Segmentation Models

Generative Models

Detection Models
Task Recognition

Fig. 10: An illustration of the original Situated Imaging
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modal inputs and perform multiple downstream computer
vision tasks simultaneously.

Upon receiving the scientist’s instruction, such as “pick
up the small dark rock”, the robot performs the rock detec-
tion utilising an imaging pipeline derived from the Situated
Imaging (SI) pipeline [40], which is an extensible array
of techniques for in-situ interactive visual computing. An
illustration of the original SI pipeline is shown in Figure 10. In
this demonstration, instead of augmented reality (AR) devices,
the “Input” came from both a human user (voice) and robot
(frames). Squawk acted as the “LLM/Task Recognition” com-
ponent that extracts the entities from the scientist’s instruction
(i.e., small dark rock in this case). GroundingDINO [21]
model, an open-set detector, was used in this particular demon-
stration to detect rocks of different properties, such as shape
and colour. Instead of going through the “Situated Imaging
process”, which is designed to overlay model outputs onto
physical object via AR headsets, SI returns the model outputs

to the robot as a formatted JSON with bounding boxes and
normalised centre points of the detected rock instances. These
are then transformed to an estimated 3D pose of the target
object in the local scene.

One of the main advantages of SI pipeline is the use of a
server-client design that loads and warms up selected chains of
models. By keeping the warmed up model in the VRAM (GPU
memory), the imaging pipeline responds to the client (e.g., a
robot or a human) requests immediately, leading to greatly
reduced latency critical for autonomous real-time behaviours.
While we ran the object detection over the network, the
detection module could be run on a GPU enabled compute
unit onboard the robot.

G. Whole-Body Reactive Manipulation Control

Most mobile manipulation systems perform navigation and
manipulation tasks separately – the base remains stationary
while the manipulation reaches to grasp an object. As shown in
Figure 11, the kinematics of the manipulator on our Collector
robot results in a small reachable workspace at ground level.
Consequently, it is likely that repositioning of the base will
be required to reach an identified object, incurring additional
time costs. Significant speed improvements are enabled by
controlling both the base and the arm with a single, holistic
controller [12].

We adapt the controller presented in [12] which converts
desired Cartesian end-effector velocities to coordinated base
and joint velocities, while using the redundant degrees of
freedom in the system to avoid actuator position and velocity
limits and maximise manipulability. This is coupled with
a simple position-based servoing loop to perform reaching
tasks. The resulting controller is reactive and compensates
for disturbances throughout the motion. Reactive capability
is particularly important for a tracked vehicle operating on



Fig. 11: Top-down view of the Collector robot. The blue
shaded area displays the area in which the manipulator can
reach and grasp objects off the ground.

unstable and uneven terrain, such as our sandpit, because
motion of the vehicle can result in unpredictable sliding and
deformation of the terrain. Various disturbances that apply to
the Collector robot while manipulating are visualised in Figure
12. The reactive control architecture effectively compensates
for these disturbances enabling robust grasping.

H. Gripper Design and Grasping Experiments

Collecting unknown scientific samples in the field vastly
increases the complexity of reliable and stable grasp execution
compared to conventional pick-and-place. Quality sensing,
perception and interactions are all impeded by unknown,
dynamic, and time-varying conditions. Visual perception, for
both object identification and ground estimation, is rendered
unreliable by the variable lighting conditions created both by
natural changes in solar luminance and light scattering off
the uneven lunar surface. As a result, grippers can easily dig
into the loose, sandy lunar terrain and erroneously record a
successful grasp when using impedance or closure as a proxy.

Soft grippers overcomes these limitations by shifting control
from external digital sensors and processors to their in-built
mechanical design and embodied intelligence. Soft gripper
are made from flexible materials, which are able to conform

Rough and deformable terrain

induce motion in end-effector position

Terrain deformation may

cause grasp target to move

Perception innacuracy may cause tracking error

Vehicle motion on terrain

may be unpredictable

Fig. 12: An overview of the various errors and disturbances
that impact the robot’s motion as it attempts a grasp.

Fig. 13: (a) Mechanical design and assembly of the Bear Claw.
(b) First gripper iteration using off the shelf fin-ray fingers
from Festo. (c) Second gripper iteration with shorter off the
shelf fin-ray fingers with soft fingertips. (d) Third gripper
iteration with entirely soft polyurethane fin-ray fingers.

to deformable objects, as well as object with unknown or
irregular geometries [14], especially for our rock sample. They
can also reconfigure to adapt to their environment [27, 10], a
critical capability in unstructured environments [28, 20] and
where sensitive physical interactions are required [39], such
as ground interaction tasks. The inherent compliance of soft
grippers absorbs energy during collisions [33], reducing the
need for high frequency feedback and control.

A series of both rigid and soft grippers were experimentally
evaluated in both laboratory and field settings. A rigid parallel
jaw gripper (the Franka Hand by Franka Robotics) provided
a baseline against which to compare our bespoke grippers.

The Franka Hand only consists of two rigid fingers, which
lead to two major issues: 1) Precise knowledge of the ground
level was required, as the rigid fingers frequently became
bogged in soft terrain, and could suffer damage if they collide
with hard terrain. 2) Even where the object and ground were
accurately localised, a stable grasp was difficult to achieve,
as objects tended to eject out of the finger plane during jaw
closure. At best, sample rocks were grasped in a small contact
patch, resulting in a unstable grasp with poor disturbance
rejection.

To address these issues, the ’Bear Claw’, a custom gripper
shown in Fig. 13 (a), was designed and mounted to the
flange of the Franka Emika Panda arm. The gripper utilised a
single Dynamixel servo motor (model: XM540-W270-R) with
a differential plate to actuate all three fingers. The fingers of
the gripper can be interchanged as needed to accommodate
different grasping tasks or requirements, as shown in Fig. 13
(b)(c)(d). The servo has an inbuilt PID control and position
feedback to enable accurate close-loop control. An Intel Re-



alsense depth camera (D415) mounted to the end of the Panda
arm was used to detect and measure objects of interest.

III. FIELD DEMONSTRATION AND RESULTS

(a) (b) (c)

Fig. 14: Demonstration Setup

Overview of the demonstration: The demonstration was
performed in a Sandpit created at CSIRO’s QCAT site, as
a representative of the granular lunar terrains as seen in
Figure 14(a). The red markers in Figure 14(a) shows the
impact location where a heavy rock was dropped manually
to simulate meteor-impact. The boulders induce mobility re-
striction and the vibration sensors are placed to detect the
robot’s motion and impact detection. Figure 14(b) shows
the location of the actual operator base station to the field
setup. The operators and scientists in the room had no visual
sight to the sandpit and all visualisation feedback and robot
commands were happening via a base station over a network.
Figure 14(c) shows a professional astrogeologist unfamiliar
with the robot system interacting using natural language. The
screen show the real-time view of the data stream of the
robot cameras. While our communication is robust to failures
and bandwidth limitations, we do not yet consider the earth-
to-moon latency in the visualisation which might require a
different visualisation mode.

Our sandpit is a representation of the environment with
granular materials with particle sizes close to lunar regolith
and as such captures the essential properties of surface trac-
tion, compaction and bearing strength for robot traversability
encountered by lunar rovers. Our samples consisted of natural
scoria rocks, a kind of volcanic rock, and pumice stones ensur-
ing different physical and visual properties from the granular
sand. The boulders were made of gray Styrofoam pieces to
allow easy rearrangement for testing obstacle avoidance and
visual inspection components.

Premapping and exploration: Prior to the impact event,
the robot Explorer, autonomously mapped the Sandpit region
to create a traversability map and collect pointclouds and
image sequences to process the semantic map of the region.
15 shows the pointcloud of the experimental region with the
robot exploration trajectory overlaid.

Enriching semantic map with attributes and relationships
using LLM: To test the capability of attribute and relationship
extraction, we provide “GPT-4 with Vision” (gpt4-vision-
preview) with both original images and their corresponding
2D segmentation masks from our semantic map generation
pipeline as shown in Figure 16. To use prompt engineering
to facilitate the output, we follow the best practices [7] to

Fig. 15: Autonomous exploration of the operational region
by Explorer. The trajectory is overlayed on the terrain map
generated from the WildCat SLAM pipeline

Fig. 16: Example image (left) and its 2D mask for semantic
as visual input (right)

provide clear and specific instructions, incorporate context,
explicit constraints, and interactive conversations to guide
LLM to generate more accurate and relevant responses, such
as background context as “you are planning route and object
manipulation for scientific sample collection by the robotic
mobile platform. Try to analyse the objects in the given image
as part of the mapping process”, as well as mandated the 4
types of attributes to be extracted for all the objects. The
attributes’ output is given in Figure 17and relationships in
Figure 18(a). Figure 18(b) illustrates the partially built scene
graph of objects within the sample image captured area of the
sandpit, highlighting their relationships and attributes.

The intended usage of the scene graph is to allow field
robot to furnish field robots with a comprehensive semantic
understanding of their environment, enabling context-aware
interactions. This scene graph implementation is a work in
progress, possessing its own set of limitations that will be
discussed in the next section.

Fig. 17: Object attributes extracted from gpt4-vision-preview
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Fig. 18: (a) Object attributes extracted from gpt4-vision-
preview, (b) Object spatial relationships extracted from gpt4-
vision-preview

Fig. 19: The sequence of images (a-d) capture the robot
position and an impact event during the 21-second mock-up
demonstration: (a) robot passes by sensor 3 at t=7s, (b) robot
passes by sensor 2 at t=12s, (c) a large rock is thrown in to
the sandpit to demonstrate a seismic event at t=15.8s, and (d)
robot passes by sensor 1 at t= 20s.

Event detection: To demonstrate the detection of un-
known seismic events, we deploy a wireless sensor network
in the sandpit as shown in Figure 19. The network consists
of 7 vibration sensors sending vibration data to a BLEAcon
node using the Bluetooth Low Energy (BLE) beacon protocol
based on a star network topology. The sampling rate for the
sensors is set to 104Hz. We use BLE advertising with an
advertising interval of 10s for time synchronisation. Note that,
for larger sensor network deployments, more energy efficient
communication (e.g., multi-hopping [9], where other nodes
are used as relays to transmit data) and computing (e.g., in-
situ processing [38], where raw data is processed locally at
the sensor node) mechanisms can be utilised for improving
energy efficiency and network lifetime).

Our event detection demonstration scenario involves a robot
moving in the sandpit for 21 seconds while a seismic event
happens at t=15.8s triggered by an impact caused by a
stone thrown into the sandpit. Figure 19 shows the images
captured for the robot position and the impact event during
the demonstration. As shown in Figure 20, the vibration

Fig. 20: Vibration signals detected by the sensor nodes during
the 21-second mock-up seismic event demonstration.

Fig. 21: Real-time impact monitoring application. On the left-
hand side, the 3D map of the sandpit with the pre-deployed
vibration sensor network is displayed. The colours of the nodes
represent the received vibration signal amplitudes. The real-
time vibration sensor data is plotted on the right-hand side. The
application uses a threshold-based method to detect impacts.
When an impact is detected, the application alerts the human
scientist displaying the details of the detection.

signatures of the robot movement and the impact event are
captured by the sensor network. The vibration sensor data
is fed into a real-time impact monitoring application, which
detects the impact based on the pre-determined threshold of
0.2g as shown in Figure 21. The application alerts the human
scientist by displaying the sensors detecting the event with the
measured signal amplitudes and the timestamps. The sensor
locations detecting the event are shared with the autonomous
robotic navigation system for impact location investigation and
sample collection. Note that, accurate localisation of the event
zone may require a priori knowledge of signal propagation
characteristics and dense sensor deployment.

Impact location investigation and sampling: The se-
quence of images from Figure 22(a-j) shows the whole pro-
gression of the Collector robot searching for a ”white rock”
and collecting it in its collection box. In Figure 22(b) the robot
uses its gripper mounted camera to look at a predetermined
search pose to detect the rock in its view. From Figure (c-e)
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Fig. 22: Snapshots of the Collector going to the impact zone,
using its wrist camera to investigate the regions and search for
the “small dark rock” as requested via Squawk interface. Upon
receiving a positive detection, a the sample is successfully
collected.

the robot uses its whole body reactive motion to position itself
to approach the rock for picking. At Figure 22(e) the robot
poses its gripper camera for a closer look and validate that
the sample matches the description given by the scientist. At
this stage the human operator could abort the pick and proceed
with another search position if the sample is not of value or if
additional information is required. Upon confirmation of the
sample validity, the robot executes an open-loop pick action
Figure 22(f-i) and drops the sample in the receptacle.

Quantitative Results To evaluate the sample collection
pipeline quantitatively, we ran the pipeline 40 times: 5 times
per prompt in two different lighting settings with 4 different
object types. The 4 prompts were : pick a ”small dark rock”,
”small rock”, ”red apple” and ”green apple”.

Fig.23 shows the performance results of the experimental
run in sample picking. Due to the open set query for sample
selection and collection, we were seemlessly able to incor-
porate objects like ”Red-Apple, Green-Apple” without any
modification or tuning of the system. The camera calibration
error resulted in wrong positioning of the target pick location
leading to 7.5% failure cases. Additionally due to erroneous
depth perception from the camera in hand, the arm had
overshoot posing resulting in overtorquing the arm. This also
includes cases where the gripper made contact with the ground
before the sample was caged. The grasping failures came

Fig. 23: The pie chart shows the performance results and
failure types during the indoor outdoor picks on 4 classes of
objects

from the softness of the gripper not able to extract enough
gripping force for an sample. The control issues in positioning
the whole body and arm were quite minimal. These however
did not capture any arm-collision cases as we assumed that
the robot would have sufficient space of operations. This
assumption is invalidated in cluttered environments and better
controller is required.

IV. OBSERVATIONS, FAILURE CASES AND LESSONS
LEARNT

We present some of our observations on the successes and
failures of deployment of the system components during our
field tests below.

Integration challenges and observations

One of the biggest lessons learnt from this demonstration
was the effort needed to ensure that each individual compo-
nents work seamlessly with each other towards a successful
sample collection. We present below some of the steps we
took to ensure reliable system integration and development.

1) Standardization across platforms with higher level ab-
straction. As we demonstrated in our previous work
[17], enabling suitable abstraction of the modules de-
coupled from the lower level system dynamics is key
for fleet deployment. This requires standardization of
behaviour stack and response rates of various heteroge-
neous platforms.

2) Dedicated effort in systems integration testing A key
lesson from software development methodologies is the
importance of regular integration testing for all com-
ponents, whether for experimental behaviors or reliable
enhancements. Considerable effort in frequent field de-
ployments ensures subcomponents meet specifications



and exposes feature mismatches and edge cases often
missed during the design phase of system architectures.

3) Field Mobile manipulation as an integration chal-
lenge We encountered a convergence of issues at
the systems level—sensing, processing, and representa-
tion—that were interconnected in the ostensibly simple
task of selecting a conspicuous rock in the sand. Failures
in any component, such as the gripper, arm positioning,
camera calibration, body positioning estimate, or terrain
deformability, hinder accurate sample collection. The
results of the sampling attempt are displayed in ??.
This experience underscores the significant challenges
involved in outdoor environments, highlighting the need
for further research and development to ensure reliabil-
ity.

4) Natural language integration The system parameters are
not as flexible as natural language, necessitating either
prompt tuning or providing operators with specific key-
words to include in their requests. Although we did not
encounter significant difficulties with this, overlooking
this critical step frequently results in the system rejecting
the request. Care has to be taken to ensure that the
terminology of the domain keywords of the scientist are
contextualized for the robot operation. This is a work in
progress for our system.

Adaptive or Compliant soft grippers improve the pick rate
in field environments

From the grasping experiments, we found that adaptive grip-
pers were useful for mobile manipulation tasks in uncertain
terrains, as they enabled the grasping of objects without the
need for high frequency force feedback or accurate positional
control. The inherent compliance of the material allowed
the gripper to conform to the shape and features of the
sampled rock, achieving stable and robust grasps regardless
of the disturbances that occurred during the manipulation
task. The soft grippers could compensate for positioning
errors of the robot arm, whereby the grasped object was off-
centred from the gripper and the ground level was higher
than estimated, allowing the grippers to dig into the ground
without resulting in damage to the manipulator arm. Overall,
future research directions should aim to address the challenges
in autonomous grasping and manipulation in unstructured
environments, where there are large uncertainties due to poor
sensing and limited bandwidth. By effectively addressing these
challenges, robotic manipulation systems can be utilised with
increased reliability to autonomously perform dangerous and
remote tasks, and thereby minimising the need for human
intervention.

It is important to note that scientific sample collection is
often more than just picking and dropping. Proper stowage is
a critical component of the collection process. To address this,
we intend to work on designing better grippers and receptacles
that are robust and efficient in field conditions.

Reactive whole body manipulation was critical in handling
kinematic limitations and position uncertainty in the field

In the field as well as in our controlled experimental testing
off-field, we found that enabling the whole body integrated
motion towards picking samples greatly increased the success
rate. Due to the positioning and the kinematics of the arm used,
the region of interaction on the ground plane with the arm was
quite limited. The base repositioning during the arm ground
approach for the pick was critical in avoiding the joint limits
and maintaining a high manipulability score. This allowed us
to do finer pose corrections than would have been possible
with fixed base arm pick motion. The final stage of grasping
was an open loop due to camera view constraints. However,
a continuous visual servo till the pick could be achieved with
an in-hand camera rather than wrist camera as demonstrated
in [2].

One key limitation with this control scheme currently is
that it does not consider any terrain or obstacle data when ex-
ecuting motion of the base and manipulator. This presents the
limitation that the current grasping task can only be executed
under the assumption that the environment is approximately
planar and unobstructed. Future work to incorporate obstacle
avoidance for both the base and the arm would allow such
a control scheme to operate in much more complex environ-
ments, further broadening the range of potential applications.

Semantic mapping provides invaluable contextual informa-
tion for deciding the parameters of the inspection or sample
collection task

From the semantic mapping experiments, we found that
relying solely on a 2D image-based semantic segmentation
model does not consistently provide robust results, due to
the complexity of the environmental elements. However, by
aggregating the 2D observations into a global map, we can
estimate the feature embedding at each location more reliably.
The proposed approach uses a sequence of pre-trained Large
Foundation Models to build the semantic map, which estab-
lishes a robust base for inspection or sample collection tasks,
while avoiding the resource-demanding local training.

We further observed that the vision-language cross-modal
embedding encoder is effective in extracting feature repre-
sentations of objects and the surrounding environment. The
extracted cross-modal embeddings can be searched using both
language and image queries, enabling enhanced interaction
through Squawk interface.

The promising results from semantic segmentation support
the approach of exploiting a comprehensive world represen-
tation enriched with detailed information about the objects
and their environment. The scene graph illustrates how the
attributes and relationships of objects serve as abstracted infor-
mation for comprehensive semantic understanding. The current
limitation mainly comes from the incapability to accommodate
viewpoint changes, which is inherent in 2D scene graphs. It
struggles to fully capture the depth and spatial relationships
necessary for accurate object interaction in a three-dimensional
space. To overcome this, we plan to introduce a 3D scene



graph in our forthcoming research. We argue that a hybrid
3D world representation, which integrates abundant object
attributes and relationships, is necessary to facilitate more
precise and flexible queries for localising and manipulating
the objects of interest in a large scene. Furthermore, the
generation process of the scene graph will incorporate cross-
modal encoding, ensuring a unified representation across both
voxel map and scene graph.

For long-term or repeated deployment of robots in granular
surfaces, low impact path planners are highly desired

Fig. 24: Long-term robot motion causing degradation of the
terrain and worsening traversability conditions at the same
time making sample collection difficult in the future.

Navigating through granular materials such as sand gen-
erally did not present substantial difficulties in linear traver-
sal. However, notable positioning errors occurred during the
robot’s on-spot rotation, leading to some scene-detection fail-
ures. These errors were particularly evident when the sand
was compact, a condition frequently observed in post-rain
scenarios where layers of wet sand were present just beneath
the dry surface. Continuous navigation and repositioning of the
base significantly altered the surface contours, in some cases
damaging the investigation site before the scientific sample
was collected as shown in Figure 24. It became apparent that
this type of movement could detrimentally affect not only
the navigation surface but also progressively impact the area’s
navigability.

This navigation challenge provides a unique opportunity to
develop innovative local path planning and base positioning
algorithms accounting for the interaction with granular mate-
rials and aiming to control the dynamic engagement of the
robot’s base with the surface. The goal would be to approach
the target area while minimising terrain disruption.

Contextual information is required for improved object
detection

We ran a variety of detectors, Yolo8 [31], Ground-
ingDINO [21] and human in the loop-detection where the op-
erator could click on the object to pick in the operator GUI. As

expected the operator enabled detection was vastly superior to
many of the automated detection but suffered significantly on
the pick latency. The current limitations for our system lied in
characterising the object for segmentation especially in partial
occlusion and similarity to background substrate. While this
is expected for zero-shot scenarios (as opposed to in-domain
scenarios), several methods can be used to further enhance the
zero-shot performance. The most important one is choosing
an accurate prompt (i.e., description of the object of interest).
Figure 25 shows the significant improvements brought by a
good prompt. When using a generic description like “rock”,
the model picks up all rocks that appear in the frame, in-
cluding a grey boulder. By adding additional description, such
as “small”, we narrowed down the predictions to grabbale
rocks. Additionally, with the addition of colour description
“dark”, the model successfully predicted the rock of interest.
Additional post-processing, such as analysing colour intensity
of detection object of interests, could effectively improve the
results. Adding semantic contextual information would vastly
improve the detection and local scene analysis for picking.

(a) “Rock” (b) “Small rock” (c) “Small dark rock”

Fig. 25: Detection results using three related but distinct
prompts.

Natural language interface vastly improved the accessibility
of robot operation for domain scientists untrained in field
robotic operations

Being able to interact with the robot using flexible natural
language by issuing commands and queries made the scientist
work with the robots on the sample collection mission with-
out having prior knowledge or training on the conventional
visual interface or memorising any robot-specific jargon and
constrained language commands. Further, our integration of
LLMs and GPT models with web access provided untapped
opportunities to extract object relevant information to aid in
providing contextual information of the event to better under-
stand the science behind it. While these are not novel ideas,
these observations were validated in our experiments. This
section outlines some of the challenges and future investigation
as language becomes an integral component of our system.

Seamless speech-to-text interaction is difficult to achieve.
While there have been rapid advances in the pipeline of
speech-to-text in the capability of newer models (including
accuracy and reduced latency), there is a degree to which a
new user needs to become familiar with the dynamics of the
interface. For example, the latency of speech detection and
the response from the system initially causes a back-and-forth
of partial dialogue as the user is unsure if a command has
gone through. With assistants that are now present on most



smartphones, users have an expectation of how a speech-to-
text interaction should be conducted, usually with the presence
of a visual and auditory cue. For our system, we print direct
feedback to a terminal, but implementing ready-to-listen and
thinking sensory cues would improve usability for new users.

Language has undoubtedly improved accessibility to our
system for a non-expert user, however, our multi-robot solution
is a complex system with many sub-components with various
capability. A new user needs to be provided with a detailed de-
scription of each component and a list of example commands.
The natural language interface requires the user to understand
what capabilities are available. Feedback from the language
system could improve this interaction by providing the user
with a suitable list of commands from the current state.
Additionally, mission state and system status information can
be provided in an intuitive way without an initial overloading
of information. These features are currently being explored.

While we scratched the surface of what is possible with an
advanced reasoning agent in the loop with our system, there
are many avenues for exploration and expansion. For example,
semantic reasoning is one of the capabilities made available
by interfacing with a language model, however there are still
points of feedback required by the user at each intersection of
technology. Work towards an undisrupted system experience is
underway. Furthermore, while our user can query large models
with the presented setup for general queries (e.g. ask chatGPT
a question), we expect end-users would be experts in their own
domains. This pushes the question of having separate models
for dedicated purposes. The most prominent of these being an
assistant targeted at the scientific method, one that is versed
in subject matter, can suggest experiments, as well as analyse
and visualise data. This exciting concept will be explored in
future work.

V. CONCLUSION

In summary, this paper has successfully demonstrated a
large-scale robot deployment designed to assist human sci-
entists in the field. We detailed an integrated system encom-
passing the detection, examination, and scientific sampling of
unknown events, all within a framework that includes a human
scientist in the operational loop.

We have showcased the application of large language mod-
els (LLMs) in enabling natural language interactions with the
robotic deployment, enhancing the efficiency and effectiveness
of these explorations. Additionally, we have provided com-
prehensive results and discussions, highlighting the potential
and current limitations of our approach. The paper has also
presented open challenges and identified key areas for devel-
opment in realising a fully functional, realistic system. We
believe that this is just one of the first steps towards realising
the vision of rapid scientific discoveries done by team of
human and robots.
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