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Demonstrating HumanTHOR: A Simulation
Platform and Benchmark for Human-Robot

Collaboration in a Shared Workspace
Chenxu Wang†, Boyuan Du†, Jiaxin Xu, Peiyan Li, Di Guo, Huaping Liu∗

Abstract—Human-robot collaboration (HRC) in a shared
workspace has become a common pattern in real-world robot
applications and has garnered significant research interest.
However, most existing studies for human-in-the-loop (HITL)
collaboration with robots in a shared workspace evaluate in
either simplified game environments or physical platforms, falling
short in limited realistic significance or limited scalability. To
support future studies, we build an embodied framework named
HumanTHOR, which enables humans to act in the simulation
environment through VR devices to support HITL collaborations
in a shared workspace. To validate our system, we build a
benchmark of everyday tasks and conduct a preliminary user
study with two baseline algorithms. The results show that the
robot can effectively assist humans in collaboration, demonstrat-
ing the significance of HRC. The comparison among different
levels of baselines affirms that our system can adequately
evaluate robot capabilities and serve as a benchmark for different
robot algorithms. The experimental results also indicate that
there is still much room in the area and our system can
provide a preliminary foundation for future HRC research in
a shared workspace. More information about the simulation
environment, experiment videos, benchmark descriptions, and
additional supplementary materials can be found on the website:
https://sites.google.com/view/humanthor/.

I. INTRODUCTION

With the development of various techniques in multi-modal
perception, reasoning, planning, and control, robots have be-
come increasingly powerful and are gradually deployed in a
variety of application scenarios. Human-robot collaboration
(HRC) has been gaining more and more interest and become
a hot-spot problem in various real-world domains, such as
industry [45, 22], surgery [19, 29], rescue [31], health caring
[3], agriculture [44], and home service [23].

A common and realistic collaboration scenario is the loosely
coupled collaboration in a shared workspace, such as doing
housework, where people act independently in the house
towards a shared goal and may communicate with the robot
to exchange information. Studying HRC in such a scenario
necessitates two key features of the simulation system: (1) The
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task is human-in-the-loop (HITL), requiring the environment
to support real-time interaction with humans. (2) The human
and the robot work in a shared workspace, where they share the
same level of observation and similar capabilities rather than
the instructor-follower paradigm in previous works [16, 33].
For example, for the task of putting an apple in the fridge,
the human has to first search for the apple and then search
for the fridge to put the apple in it. With the human-robot
collaboration, the human and robot can simultaneously search
for the apple and fridge respectively in the shared workspace.
When the robot finds the fridge, it could report the position of
the fridge to the human and the human could take the apple
directly to the fridge, improving working efficiency.

To support further study, establishing a system along with
corresponding benchmarks is crucial. However, existing sys-
tems may not be sufficient for studying the HITL collaboration
with robots in a shared workspace due to various limitations.
One mainstream practice is to study HRC on physical systems,
such as performing collaborative assembly of furniture [30],
pick and place tasks [13], and simple picking objects [36]. De-
spite the practical effectiveness, physical systems may suffer
from high economic costs, limited reproducibility, and rela-
tively small scales. On the other hand, studying cooperation
in 2D games such as the Overcooked [4] and the cooperative
table-carrying game [32] may fall short in being too simple to
generalize to physical robots, despite their reproducibility.

Fortunately, recently there emerge many embodied simula-
tors such as AI2THOR series [21, 9, 12], which appear to be
excellent platforms for studying robot algorithms, for both be-
ing able to scale up and approximate the real world. However,
although many studies have noticed the importance of human
factors and extended the benchmarks to incorporate various
modalities of human collected data, such as [18, 49, 16], there
have been limited attempts to study the HITL collaboration in
such embodied simulators.

To support the study of HITL collaboration with robots
in a shared workspace, we build an embodied human-robot
collaboration environment based on the AI2THOR frame-
work, namely HumanTHOR. As shown in Figure 1, humans
can immersively control their avatars to cooperate with the
robot in the environment through VR devices. Compared to
previous works that use VR to collect human demonstration
[24, 14, 25], our environment is dedicated to HRC tasks with
various functional supports, such as enabling synchronous col-
laboration between humans and robots and providing image-



Fig. 1: An overview of the HumanTHOR system, where the human can act in the simulator through the VR device with the
first-person view akin to the robot. The system also supports the top-down view with instant displaying of the positions and
orientations of the human and the robot.

text communication interfaces.
To demonstrate our system, we further implement a pre-

liminary HRC benchmark of everyday tasks, including two
representative tasks: object goal navigation and mobile ma-
nipulation. To generate realistic and diversified episodes, the
initial states of object arrangement are sampled from a set of
scene priors. To validate our system, we conduct a user study
by employing a rule-based robot and an oracle robot as base-
lines. Experimental results show that robots can significantly
assist humans in everyday tasks, and our system serves as an
effective testbed for HRC studies.

We summarize our main contributions as follows:

• We develop the HumanTHOR system, which enables
real-time human-robot collaboration in shared workspace
with multi-modal communication through VR devices.

• We implement a benchmark of everyday tasks, which can
be used for studying HRC in embodied scenarios with a
human-robot communication mechanism.

• We run a user study with various settings of robots. The
results suggest the effectiveness of our system to evaluate
the capability of robot algorithms and further serve as a
testbed for studying HRC problems.

This paper is organized as follows: in Section II, we review
recent works that are related to our study. We introduce the
architecture, main characteristics, and implementation of the
HumanTHOR system in Section III. In Section IV, we elabo-
rate on the designation and details of the HRC benchmark. We
then present the experiment results and corresponding analysis
in Section V. In Section VI, we demonstrate the extensibility
of our system and extensions regarding multi robots with
more complex HRC tasks and robot algorithms. Finally, we
conclude and discuss the future work in Section VII.

II. RELATED WORK

A. Human-Robot Collaboration

The pursuit of creating collaborative and user-friendly
robots has attracted substantial attention in the research com-
munity. To provide an immersive user experience, Virtual
Reality (VR) has been frequently utilized as the user interface
in human-robot interaction studies [11]. Beyond serving as a
display media [34], the matched controllers enable humans
to teleoperate robots or their avatars [8, 20, 42]. Such VR-
based controls are also extensively used for collecting human
demonstrations for robot learning [24, 15].

Since VR provides virtual and digital visions, such tech-
niques can also be integrated with real-world systems and be-
come Augmented Reality (AR) or Mixed Reality (MR), which
significantly benefit collaborations in the physical world. MR
can serve as a communication medium to convey the intention
of robots [36, 30], while AR can facilitate the study of human-
robot collaboration in shared workspace [35].

To provide immersive environment exploration and oper-
ation and approximate the human-robot collaboration in the
real world, we employ VR as the user interface in our
HumanTHOR system.

B. Simulators and Benchmarks for Embodied Intelligence

Along with the rising interest in embodied intelligence,
a considerable number of simulation environments emerge.
Environments such as AI2THOR series [21, 12, 9], iGibson
[39, 24], Habitat [38, 43], Matterport3D [5], and RFUniverse
[15] have present vivid simulation with various physics sys-
tems and make it possible for building benchmark for tasks
such as navigation or manipulation.



Beyond the platforms, various benchmarks for embodied
tasks have been proposed, such as question answering [7],
visual language navigation [1], scene graph generation [26],
and performing composite everyday tasks [40]. After achieving
adorable success in these tasks, researchers have turned their
gaze to multi-agent settings [27, 28], considering human-
factors [41, 50], and collaboration with humans. Beyond a
single paragraph of instructions, GesTHOR [49] augment the
embodied navigation with human gesture indications. Hand-
MeThat [46] takes one more step toward HRC by playing a
record of human actions and instructions and then trains the
robots to follow such instructions. Recent benchmarks con-
sider communication between humans and robots. DialFRED
[18] and TEACh [33] extend the instructions into dialogue
form and encourage the robots to actively raise questions.
Alexa Arena [16] builds an interactive environment where the
instructor and executor can interactively communicate with
natural language. While the benchmark is built on offline data,
the environment may also support HITL collaborations.

To comprehensively support our intended HRC study, the
system requires several key features, including: (1) Vivid
3D simulation, for both aligning the simulation to real-life
robot application and better human experience; (2) HITL
interaction, for conducting experiments with real humans
instead of with proxy agents or offline data; (3) Shared
workspace collaboration, which is the domain we intend
to study; and (4) Instant communication, a vital component
for human-robot interaction and simulating the collaboration
in the real world. For loosely coupled collaboration where
the human and robots may not always stay in the vision
of each other, the system is expected to support multimedia
message-style communication, including both image and text.
Additionally, the system is expected to have a VR interface for
both immersive human experience and better aligning human
activities to the real life.

However, existing simulation environments are not sufficient
enough to simultaneously meet all the requirements mentioned
above. To overcome this shortage, we build the HumanTHOR
system that includes all the abovementioned features. A de-
tailed comparison between the proposed HumanTHOR and the
existing simulation environment is delineated in Table I.

III. SYSTEM FRAMEWORK

A. System Overview

Aiming to support human-in-the-loop collaborations in a
shared workspace with flexible and multimodal communica-
tion, we design and implement the HumanTHOR system based
on the AI2THOR platform. As the hierarchical architecture il-
lustrated in Figure 2, our system consists of three components:

• The THOR simulator implemented with the Unity
framework based on the AI2THOR infrastructure, re-
sponsible for physical simulation, scene rendering, and
solving the interaction between agents and environments.
The simulator exposes a set of socket-based APIs for
controlling.
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Fig. 2: The architecture of our HumanTHOR system.

• The python software that supports further HRC study,
including extensible benchmarks which will be intro-
duced in Section IV, a code framework for running robot
algorithms and a web user interface for controlling and
monitoring the HRC experiments.

• VR devices. We use Meta Quest 2 in our system, includ-
ing a headset and a pair of controllers. VR devices are
connected to our simulator through the Oculus platform.

By integrating VR devices into our system, humans and
robots can concurrently work within the environment, thereby
achieving HITL and human-robot collaboration in a shared
workspace.

B. Supported APIs

To support various requirements of HRC benchmarks, our
system provides dozens of APIs in the HumanTHOR environ-
ment, which are generally in the following four categories:

• Environment configuration: We provide a series of
APIs for setting up the environment, including selecting
scenes, initialization, and object settings. To support the
development of benchmarks to set up customized tasks,
environmental information is also obtainable, such as the
amount, positions, and states of objects.

• Agent control: Similar to previous works, HumanTHOR
supports agent actions such as move, rotate, teleport,
pick, and place. For the convenience of customizing
benchmarks, we use a flexible format in which the move
action and the rotate action take a vector that indicates
the variation as input, and leave the designation of atomic
actions to the benchmark level.

• Perception and monitoring: Following the conventions,
our environment provides an ego-centric RGB observa-
tion and a depth map. We also provide a top-view image
and the positions of all agents for monitoring.

• Communication: A major contribution of our Human-
THOR environment is the multimodal communication
module for collaboration. We provide communication



Benchmark Simulation Domain VR Interface HITL Collaboration Shared Workspace Communication
Image Text

Overcooked [4] 2D ✗ ✓ ✓ ✗ ✗
It takes two [32] 2D ✗ ✓ ✓ ✗ ✗
HandOverSim [6] 3D ✗ ✗ ✓ ✗ ✗
VR Kitchen [17] 3D ✓ ✗ ✗ ✗ ✗

DialFred [18] 3D ✗ ✗ ✗ ✗ ✓
TeaCh [33] 3D ✗ ✗ ✗ ✗ ✓

‘ HandMeThat [46] 3D ✗ ✗ ✗ ✗ ✓
GesTHOR [49] 3D ✓ ✗ ✗ ✗ ✗

Alexa Arena [16] 3D ✗ ✓ ✗ ✗ ✓
HumanTHOR 3D ✓ ✓ ✓ ✓ ✓

TABLE I: Comparison between HumanTHOR and related HRC benchmarks across various aspects.

APIs including sending image-text messages, responding
to messages, and querying the response status.

C. User Interface and VR Supports

To provide an immersive experience for human players,
we employ VR as the user interface. Humans can perceive
the environment from the first perspective with the headset,
and control their avatars through the buttons and the rocking
bars on the controllers, which enable them to move in the
environment and interact with objects. We further develop
several interfaces for human-robot communication including
an image-text message box and a location map, all can be
presented in the human vision. We present these operations in
Figure 3.

IV. BENCHMARKING HRC WITH EVERYDAY TASKS

The HumanTHOR platform is eligible for studying various
HRC tasks at various levels, being available for both evaluating
robot algorithms and human-robot collaboration studies. We
model the benchmark structure in a hierarchical way as
illustrated in Figure 4, where we start by supporting elemental
tasks, based on which we can perform practical everyday tasks,
such as visual language navigation [40], room rearrangement
[2, 47], tidying up [37]. Ultimately, HumanTHOR supports
studying high-level scientific problems such as Theory-of-
Mind and human trust modeling.

To preliminarily validate the effectiveness of our system, we
build benchmarks for the elementary object goal navigation
task and a compound HRC task, mobile manipulation, as
defined in the following:

• Object goal navigation, a representative and fundamen-
tal task in the embodied intelligence domain. Such tasks
target a common situation in which a human is searching
for something in the house. The task succeeds when the
human successfully finds the target object.

• Mobile manipulation. In this task, participants need to
pick up the target object and place it at the destination
place. This is a fundamental type of everyday task, which
is also adopted by ALFRED [40], being more complex
than navigation tasks since it involves multiple objects
and interactions with the environment.

Two examples of tasks are presented in Figure 5. Similar
to previous works [40, 16], our tasks are defined with three

Fig. 3: Interacting with the environment with VR devices. (a)
Moving the human avatar by operating the joystick on the
VR controller. (b) With the help of the sensors on the head-
mounted display, humans can conveniently rotate the angle
of view by turning around in reality. (c) When being close
enough to an object, humans can pick up a movable object
by pressing the side button as shown in the figure, or open a
receptacle such as a fridge. (d) After receiving a message from
the robot, humans can make quick responses with the A/B
buttons on the controller. In our benchmark of collaborative
tasks, the message is presented in a dialogue box in the human
view, where button A is for confirmation and button B is for
decline. After confirmation, a map with the relative positions
of the robot and human will be displayed, which can also be
hidden or redisplayed by the button operation.

essential components: initial state that determines the initial
arrangement of objects, goal definition which formalizes the
criterion of success, and auxiliary information such as natural
language description of the tasks.

A. Object-centric Interactive Communication

We implement an object-centric communication flow with
corresponding user interfaces for human-robot collaboration
in everyday tasks. Whenever the robot feels necessary to
communicate with object-related information, it can send an
image-text message as shown in Figure 6 (a), which consists
of the observation of the robot and a custom message text,
as in Figure 6 (b). If humans are interested in the message,
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Fig. 5: The general processes of navigation tasks and manip-
ulation tasks. The mobile manipulation task is more complex
and difficult since it requires further manipulation after suc-
cessfully finding the target.

they can press the button to confirm. Then a map with relative
positions will be shown subsequently to help the human go
to the suggested place. Both user interfaces can be temporally
hidden and displayed whenever the human wants. We also
provide an API for the robot to query whether its suggestion
is accepted or declined.

It is worth noting that robots are free to choose when and
what to send in the message, and are allowed to cover the
previous message with new ones. Combined with hierarchical
levels of capabilities in heterogeneous teamwork, there still
exists a large room for further study. For complex tasks, robots
may need to carefully estimate human mental state to choose
the appropriate time for sending messages, and conveying
important information while not bothering humans too much.

B. Generating Everyday Tasks with Scene Priors

Our benchmark incorporates 10 scenes and 14 objects, in-
cluding 8 receptacle objects and 6 target objects. We obtain 19
mobile manipulation task templates by artificial annotations,
which are in the form of Picking a/an {target object} and
place it in/on a/an {receptacle objects}.

We generate the initial state with the guide of scene priors
like exhibited in Figure 7. We first build a knowledge graph
with 65 triplets by human annotations, each triplet represents

(a) The image-text message sent by the robot

(b) The map with relative locations after confirmation

Human

Robot

Target

Human

Robot

Target

Fig. 6: An illustration of the object-centric communication for
human-robot collaboration.

Fig. 7: An example of scene priors and the task generation
pipeline.

a possible prior relation (target, relation, reference). We
weight the triplets by combining the similarities between the
textual features of objects adopted from the pretrained BERT
model [10] and human priors.

We take three steps to instantiate the task as illustrated in
Figure 7. First, we pick a task template that is applicable to
the scene to determine the goal. Then we construct a scene
graph by sampling scene priors from the knowledge graph.
Each sampled relation corresponds to an area where the object
should be placed, and the specific position of each object is
subsequently determined. Following this program, we generate
565 navigation tasks and 1583 mobile manipulation tasks. All
initial relations of the target object are sampled once for each
task template in each scene, while the irrelevant objects are
not limited.

V. EXPERIMENTS

To validate our proposed HumanTHOR system, we conduct
a preliminary user study on a subset of our built benchmark,
focusing on the mobile manipulation tasks, which are more
complex and encompass the navigation task. We aim to



Robot setting SR (%) TWSR (%) Adoption Rate (%)
No Robot 63.8 46.7 /
Frontier 72.9 54.3 56.0
Oracle 91.4 66.7 90.0

TABLE II: Average success rate, time-weighted success rate,
and adoption rate in all three settings.

Fig. 8: Average time spent to
complete the tasks

Fig. 9: The variation of aver-
age human trust scores over
trials.

answer two questions in the experiment: (1) the necessity
of HRC: can the robot help humans perform the tasks? (2)
The effectiveness of our system as an evaluation benchmark:
can our experiment distinguish different levels of robots and
evaluate their capabilities?

A. Baselines

We incorporate two simple robot baselines in the exper-
iments. For both robots, the enabled actions include move,
rotate, and send message. The atomic movement distance
can not exceed 0.5 meters, the angle of pitch is limited to
[−30◦, 30◦], and sending a message requires a custom text
and an estimated position. The details of the baselines are as
follows:

• Frontier agent. It is a rule-based agent that explores
the environment with the frontier algorithm and sends
messages whenever it detects the target. To simplify the
task, we endow the frontier agent with an ideal object
detector that can get ground truth object detection within
1.5 meters.

• Oracle. The oracle robot knows the positions of all
objects and will navigate to the target object along the
shortest path. However, it still follows the communication
framework and only sends messages when it is close
enough to detect the target.

Both baselines take a default setting to search for the target
object instead of the receptacle or dynamic task allocation.
Though the baselines may not be practical or optimal, we
clarify that they are used for the verification and calibration of
our system, where the oracle serves as an approximation of the
upper bound and the frontier serves as a rule-based baseline
without training or intelligent algorithms. Besides, we also set
up a control group that has no robot.

B. Experimental setup

We sample 3 mobile manipulation tasks in each scene for
the experiments, in total 30 tasks in all 10 scenes. We invite 18

human participants, which are equally divided into 3 groups.
Each group plays within a robot setting for 10 random tasks,
one task in each scene. For a fair comparison, the sequence
of tasks is random for each participant. For each task, the
participant has 90 seconds to finish the task. After finishing
each task, the participant is asked to give a trust score for the
robot (if applicable) to study human trust. The trust score is
an integer from 1 to 7, where 1 denotes not trust at all and 7
denotes the highest trust. Though the participants do not know
the robots, they are told that they will be cooperating with
the same robot throughout the experiment. After eliminating
broken cases, we get 175 unit trials for analysis.

We assess the capability of robots through the success rate
and execution time. The task success score s is defined as 1 if
the target object is placed in the correct place, and 0 otherwise.
The success rate (SR) is calculated by the ratio of success
tasks. As a human-centric experiment, we use the time-
weighted success rate (TWSR) instead of path path-weighted
success rate (PWSR). The TWSR score st is calculated by the
following formula:

st = s ∗ T ∗

max(T ∗, T )
, (1)

where T denotes the time spent on the task, and T ∗ is the
minimum required time that is estimated by the distance of
the shortest path. Besides, we record the adoption rate for
robots to measure their help. A robot is considered adopted if
it sends a message that is confirmed by the human. Participants
can modify their adoption orally when mistouch the button, or
exclude it from statistics for boundary cases.

C. Results

1) Quantitative Analysis: We present the quantitative
scores in Table II. Compared to the control group where
no robot assistant exists, both the frontier robot and the
oracle bring improvement in all quantitative metrics, including
the success rate and the time-weighted success rate. As an
approximation of the upper limit, the oracle improves the
success rate significantly to 91.4%, much more significant than
the frontier agent which serves as a medium-level baseline.
The oracle also has a much higher adoption rate, suggesting
it is considered more helpful in collaboration. The significant
discrepancies in quantitative metrics show that our system can
successfully distinguish the capability of robots and thus be
an eligible evaluation benchmark.

Another representative indicator, the average time spent
across tasks is shown by the box plots in Figure 8. Although
the robot successfully improves the overall performance, we
find the improvement mainly appears in the hard tasks. As
illustrated, the lower bound of time spent by the oracle and
the frontier are almost the same, and the lower quartiles of
all three settings do not have significant differences. This fits
our insights that in household tasks, the robot plays its role
when the task is at a specified level of difficulty. Too easy
tasks in which the targets are very close to the robot or the
human can not examine the capability of robots. As suggested



Fig. 10: A representative task for demonstrating the effect of robot assistants. We take one case in each robot setting and
present the top-down maps and human observations at several keyframes. The colored lines in the top-down maps denote the
trajectories of the robot and the human.

by the results, our benchmark covers tasks of various levels
of difficulty and thus can be used as a general evaluation
platform.

2) Human trust: We present the variation and average of
human trust over trial times in Figure 9, where the shade
denotes standard errors. Notably, the oracle always receives
higher human trust than the frontier agent, which confirms that
humans are aware of the distinction in robot capabilities and
are willing to give higher trust to better agents. An interesting
phenomenon is that since humans do not have the top view and
are not aware of the robot’s trajectory, they tend to measure
the capability of robots from the time spent for searching.
This results in the vibration of the trust scores, e.g., when the
task is hard and the initial position of the target object is far
from the robot, humans tend to reduce their trust scores due to
the less help offered by the robot. Nevertheless, humans also
consider the accumulated performance of the robot, reflected
in the gradually converging trust scores. Besides, we find the
trust scores for the oracle show a rising trend along with the
progress of the experiment. We think the reason is that humans
have noticed that the oracle can always find the target and raise
the score, whereas the frontier agent still has a probability of
failing.

The clear gap between the frontier agent and the oracle
demonstrates that our experiment can successfully discriminate
the capability of agents and serve as an effective benchmark
for evaluating the power of agents and studying human trust
in robots.

D. Case study

We present a case study to show the general collaboration
process in Figure 10, in which the human is asked to find

the remote and put it on the bed. The global maps show
the layout of the house and the positions of task-related
entities, where the human starts from the corridor and the
robot is in the living room. As shown in trajectories, the oracle
robot directly navigates to the target and is the first to report
its position to the human. With such guidance, humans can
quickly succeed with almost no extra exploration. Without
prior knowledge, the frontier agent has to spend some time
exploring and may even fail sometimes. Fortunately, it can
still successfully find the target in many cases, resulting in
saving some exploration time for humans. In contrast, when
there is no robot assistant, the human may have to explore the
full house and spend a lot of time. The human does not even
find the target when the oracle-guided participant succeeds,
while the frontier-assisted participant gets back to the bed
with the remote. The comparison among the three trajectories
demonstrates the assistance effect of different levels of robots
on humans in collaboration tasks. Since the picked case is
of medium difficulty in a small house, all three shown trials
finally succeed in nearly 75 seconds. However, the assistance
of robots might be vital in hard tasks. For more cases and
details, please refer to our accompanying video.

VI. SYSTEM EXTENSIONS

Based on the introduced functionalities, our platform is
extensible for customized complex tasks and studies. In this
section, we discuss the extensibility of HumanTHOR, includ-
ing further support on the multi-robot setting, more complex
tasks, and more robot algorithms.
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Fig. 11: A demonstration of HRC in a multi-robot multi-target mobile manipulation task, where the human-robot team is asked
to collect and place 3 apples. The complete task process is illustrated in the human’s first perspective. Since the small robot
can not interact with the fridge, it reports to the human and lets the human check the fridge. In contrast, the tall robot with
manipulation capability can directly take the apple back.

Fig. 12: The HumanTHOR system supports various types of
robots and is extensible for further customization. Current
robots are from the ProcTHOR dataset.

Fig. 13: Comparison between the original scene and the shuf-
fled one within three angles of view in the room rearrangement
task. The moved objects including apple, lettuce, and tomato,
are marked with gold squares in the original scene and with
red squares in the shuffled scene.

A. Mutli-robot setting

HumanTHOR supports incorporating multiple robots with
the same or different types simultaneously in one scene. To
further exhibit this feature, we demonstrate a multi-robot multi-
target mobile manipulation task as illustrated in Figure 11, in
which the human has two heterogeneous robots as assistants.
In this task, the taller robot has the manipulation capability,

Fig. 14: We present an example of employing the SAVN model
to search for an apple in our HumanTHOR system. Success
in simple cases demonstrates the practicability of leveraging
deep learning models in our system, while failure in more
cases suggests room for further study in robot algorithms.

whereas the small robot can only navigate. Both of them can
communicate with the human and contribute to the task in
different ways. The HumanTHOR system is also extensible
for more types of robots, where the robots can have differ-
ent appearance, size, performance, and capabilities. Currently
available robots are illustrated in Figure 12.

B. More complex tasks

As introduced in Section III-B, the HumanTHOR simulator
exposes APIs for configuring scenes and objects on the fly,
enabling multi-stage tasks such as room rearrangement [2].
In this task, the human and robots can first tour the clean
environment and record the object arrangement, as shown in
Figure 13 (a). Once they are ready, some object arrangement
will be shuffled as in Figure 13 (b), requiring rearrangement.

Similarly, our system supports tidying up [37], another
rearrangement task where no reference environment is pro-
vided and the agents need to rearrange objects according to
commonsense, making the communication between the human
and robots more important. For room rearrangement and
tidying up tasks, we provide more details and corresponding
demo videos with an oracle agent on our website.

C. More robot algorithms

As introduced in Section III-B, the HumanTHOR simu-
lator provides ego-centric RGB observation and depth map.
Therefore, vision-based navigation algorithms are also well
supported. For demonstration, we reproduce a representative



learning-based visual navigation model, SAVN [48]. As illus-
trated in Figure 14, the existing visual navigation models are
applicable in the HumanTHOR system. However, searching
for objects in the whole house is still challenging and there
exists room for further study.

VII. CONCLUSIONS

In this paper, we introduce HumanTHOR, an extended
embodied simulator with an everyday task benchmark for
studying human-robot collaboration in a shared workspace.
Compared to existing environments and benchmarks, the Hu-
manTHOR not only provides realistic simulation and a human-
in-the-loop collaboration platform but is also scalable and
flexible to support various collaborative robot studies such
as human trust, emergent behavior, etc. Our preliminary user
study results substantiate the helpfulness and importance of the
robot assistant in human-robot collaboration by showing the
improvement in overall quantitative performance and the gap
indicates the room for further study on algorithms. Besides,
the subjective results validate the availability of HumanTHOR
in conducting human-related studies such as human trust.
The quantitative and qualitative results have exhibited the
effectiveness of our system in serving as a benchmark and
experimental platform for HRC.

Beyond the conducted experiments, the HumanTHOR sys-
tem also supports advanced features such as multi-robot
settings and more complicated tasks such as collaborative
rearrangement. Customized robot algorithms such as learning-
based visual navigation models are also well supported. In
general, our HumanTHOR establishes a foundation and em-
bodied test field for various future work in the human-robot
collaboration domain.
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