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Abstract—Whether rigid or compliant, contact interactions
are inherent to robot motions, enabling them to move or
manipulate things. Contact interactions result from complex
physical phenomena, that can be mathematically cast as
Nonlinear Complementarity Problems (NCPs) in the context of
rigid or compliant point contact interactions. Such a class of
complementarity problems is, in general, difficult to solve both
from an optimization and numerical perspective. Over the past
decades, dedicated and specialized contact solvers, implemented
in modern robotics simulators (e.g., Bullet, Drake, MuJoCo,
DART, Raisim) have emerged. Yet, most of these solvers tend
either to solve a relaxed formulation of the original contact
problems (at the price of physical inconsistencies) or to scale
poorly with the problem dimension or its numerical conditioning
(e.g., a robotic hand manipulating a paper sheet). In this paper,
we introduce a unified and efficient approach to solving NCPs
in the context of contact simulation. It relies on a sound
combination of the Alternating Direction Method of Multipliers
(ADMM) and proximal algorithms to account for both compliant
and rigid contact interfaces in a unified way. To handle ill-
conditioned problems and accelerate the convergence rate, we
also propose an efficient update strategy to adapt the ADMM
hyperparameters automatically. By leveraging proximal methods,
we also propose new algorithmic solutions to efficiently evaluate
the inverse dynamics involving rigid and compliant contact
interactions, extending the approach developed in MuJoCo. We
validate the efficiency and robustness of our contact solver
against several alternative contact methods of the literature and
benchmark them on various robotics and granular mechanics
scenarios. Overall, the proposed approach is shown to be
competitive against classic methods for simple contact problems
and outperforms existing solutions on more complex scenarios,
involving tens of contacts and poor conditioning. Our code is
made open-source at https://github.com/Simple-Robotics/Simple.

I. INTRODUCTION

Contact interactions are the substrate of movement. When
performing locomotion or manipulation tasks, one naturally
makes and breaks contact with the environment. Providing
robots with such abilities would require them to precisely
apprehend the physics of contact. In this respect, simulators
have been key components for various robotics applications.
Reinforcement Learning (RL) policies for manipulation [12,
24] or locomotion [35] often rely on years of simulated
trajectories during training. Alternatively, Model Predictive
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Fig. 1. Simulation of an ill-conditioned stack of cubes. Our approach
robustly solves high-dimensional and ill-conditioned problems such as the
ones involved when simulating a stack of 15 cubes involving more than 60
contact points and objects’ masses varying from 1 kg (bottom row, in light
blue) to 10.000 kg (highest row, in bright red). Simulation videos at https:
//youtu.be/i qg9cTx0NY?si=NGtx1tiYrIGtHXSK.

Control (MPC) techniques call the simulator and its derivatives
at high frequency at runtime to achieve a reactive behavior
[32, 30].

Simulating rigid contact interactions with friction requires
solving a Nonlinear Complementarity Problem (NCP) which
has been recognized as a hard problem both from an
optimization and numerical perspective [2]. For this reason,
simulators proceed to tradeoffs between physical realism,
robustness, and efficiency. In this respect, each physics engine
embeds its own contact model and contact solver, which come
with their underpinning physical hypotheses and numerical
capabilities.

Earlier simulators like ODE [49] and Bullet [14] have
been developed for graphical purposes. Graphical applications
mainly require the physics engine to provide visually
consistent trajectories. Nowadays, the requirements in robotics
applications are different: the physics of contacts should be as
close as possible to reality, and the contact solver should be
numerically efficient. Indeed, this would reduce training time
and enhance the transferability of RL while making MPC more
reactive.

More recently, robotics-oriented engines were developed
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with a focus on efficiency. MuJoCo [54] introduces a physical
relaxation that induces a convex contact model with distant
and compliant interactions. This choice enables the use of
powerful algorithms from the optimization literature and leads
to improved stability of the simulation. Its robustness has made
MuJoCo the standard testbed for RL algorithms, but its reality
gap still limits its use in robotics. Drake [53] leverages a
similar contact model [11] and proposes a procedure to set
the compliance parameter more realistically, according to the
physical parameters of the simulated objects. This results in
an improved sim-to-real transfer capability on manipulation
tasks [29]. RaiSim [27] fixes MuJoCo’s artifacts due to distant
and artificially compliant contact forces but at the expense
of less robust numerics [33]. The resulting contact model
drove success in quadrupedal locomotion in challenging setups
[28, 35, 39].

Recent works [25, 33] compare the different existing
approaches and their impact. Although they highlight the
significant improvements in contact simulation driven by the
efforts of the robotics community, they also reveal current
simulators are all subject to trade-offs and, thus, some barriers
are still to be removed. Some experimental works [20, 3] also
evaluate contact models from current simulators against real-
world data. They show that they still fail to capture accurately
the physical phenomena involved in contact interactions.
Inspired by these studies, we aim to improve the physicality
of current simulators while preserving their efficiency.

We make the following contributions:

• we introduce a new formulation and related algorithm for
solving forward dynamics problems with contacts that
can efficiently deal with compliant and rigid contacts
without making any physical relaxation,

• we propose a formulation and an algorithmic solution
for computing inverse dynamics with rigid and compliant
contacts, the reciprocal of forward dynamics, extending
the seminal work of Todorov [54],

• we provide an open-source and efficient C++
implementation leveraging the Eigen library [23],
and that can be easily plugged into existing simulation
frameworks,

• we extensively evaluate the proposed solutions on both
mechanics and robotics scenarios of the literature.

The paper is organized as follows. We first provide
the necessary background on constrained dynamics, how it
connects to proximal optimization, the NCP appearing during
the simulation of frictional contacts and the existing solver
from the robotics community (Sec. II). Second, we propose
an ADMM-based algorithm for contact solving (Sec. III).
Third, we introduce a similar algorithm for the problem
of inverse dynamics in the presence of contacts (Sec. IV).
Finally, we evaluate our approach against standard problems
of the robotics and mechanics communities (Sec. V) before
discussing how it compares to previous works (Sec. VI).

II. BACKGROUND

In this section, we recall the principles underlying the
simulation of systems under rigid and compliant constraints.
To prepare the ground for the proposed algorithm, we
introduce proximal operators and how they can be interpreted
from a mechanics point of view. Finally, we introduce the NCP
underlying the simulation of physical systems in the presence
of frictional contacts and the existing approaches to solve it.

A. Equality-constrained dynamics

The free motion of a poly-articulated system is governed by
the so-called Lagrangian dynamics of the form

M(q)v̇ + b(q,v) = τ (1)

where we denote by q ∈ Q ∼= Rnq , v ∈ TqQ ∼= Rnv and τ ∈
T ∗q Q ∼= Rnv , the joint configuration vector, the joint velocity
vector and the joint torque vector. M(q) is the joint-space
inertia matrix and b(q,v) includes terms related to the gravity,
Coriolis, and centrifugal effects. Considering constraints such
as kinematic loop closures or anchor points can be done by
adding implicit equations of the form

fc(q) = 0, (2)

where fc : Q 7→ Rm is the constraint function of dimension
m. Such constraints act on the system via the constraint forces
λ ∈ Rm that are spanned by the transpose of its Jacobian,
denoted by Jc ∈ Rm×nv . Thus, the constrained equation of
motion reads

M(q)v̇ + b(q,v) = τ + J>c λ. (3)

In order to simulate the constrained system, given a torque
input τ and knowing q, v, one needs to solve (3) and (2)
for the unknowns v̇ and λ. To do so, it is more convenient
to first rewrite (2) as a function of v̇ by proceeding to index
reduction. Thus, differentiating (2) twice with respect to time
yields

Jcv̇ + J̇cv︸︷︷︸
γ(q,v)

= 0. (4)

For index reduction to be valid, it implicitly assumes that the
preceding once differentiated and the original systems (2) are
verified at the current time-step. Due to numerical reasons,
such a condition is never exactly met, and a corrective term is
added to γ to avoid numerical drift as done in the Baumgarte
stabilization techniques. Combining the equations (3) and (4)
leads to (

M J>c
Jc 0m×m

)(
v̇
−λ

)
=

(
τ − b(q,v)
−γ(q,v)

)
. (5)

At this stage, it is worth noting that (5) is often not invertible
as cases where Jc is rank deficient i.e. hyper-static systems,
are common in robotics.



B. Compliant constraints

In the previously described constrained dynamics, rigid
constraints were modeled via (2) which enforces fc to be
null. When modeling compliant constraints, the function fc
is allowed to be non-null but now defines a potential energy
U(q) = 1

2‖fc(q)‖2R−1 where ‖x‖A =
√
x>Ax for any

x ∈ Rm and any A ∈ Rm positive semi-definite. Here,
R ∈ Rm×m denotes compliance, which is a physical property
of the system. Such potential energy leads to a constraint
torque τc

τc = −∇qU(q) = −J>c R−1fc(q)︸ ︷︷ ︸
−λ

, (6)

which induces (2) to be replaced by a linear mapping between
constraint forces and constraint violation

fc(q) = −Rλ. (7)

As previously described, proceeding to index reduction with
(7) and adding (3), simulation of compliant constraints leads
to the following system(

M J>c
Jc −R

)(
v̇
−λ

)
=

(
τ − b(q,v)
−γ

)
, (8)

whose only difference with (5) lies in the null lower right block
being replaced by the compliance matrix R. Numerically,
this difference appears to be critical. Indeed, R being
positive definite makes the system (8) always well-defined and
invertible [55].

C. Constrained dynamics from an optimization perspective

All the previous equations could be alternatively derived
from an optimization standpoint. Indeed, one could observe
that (5) coincides with the Karush–Kuhn–Tucker (KKT)
conditions of the following Quadratic Programming (QP):

min
v̇

1

2
‖v̇ − v̇f‖2M (9)

s.t. Jcv̇ + γ = 0

where v̇f = M−1(τ − b(q,v)) is the so-called joint free
acceleration of the unconstrained system (1). Problem (9)
corresponds to the formulation of the least constraint
principle [7] and is equivalent to the following saddle-point
problem:

min
v̇

max
λ
L(v̇,λ) (10)

with L(v̇,λ) = 1
2‖v̇ − v̇f‖

2
M − λ>(Jcv̇ + γ) being the

Lagrangian associated to (9).
Similarly, the compliant system (8) could be retrieved from

the regularized problem:

min
v̇

max
λ
L(v̇,λ)− 1

2
‖λ‖2R. (11)

where the deformation energy acts as a Tikhonov
regularization on the dual variables (i.e., the constraint
forces) of the rigid constrained problem (10).

D. Proximal algorithms

Proximal algorithms [45] are a general class of optimization
techniques, ubiquitous in convex optimization, and are
essentially rooted around the notion of proximal operators.
The proximal operator [40] of a convex function f is defined
by

proxρ,f (x) = arg min
y

f(y) +
ρ

2
‖x− y‖22 (12)

where ρ ∈ R>0 is homogeneous to the inverse of a step size.
A specific property of this operator is that its fixed points
coincide with the set of minimizers of f . The proximal point
algorithm [45] uses the corresponding fixed point iteration

xk+1 = proxρ,f (xk), (13)

and is known to converge towards a minimizer of f .
Considering the particular case of QP, one seeks to solve

min
x

1

2
x>Hx+ g>x (14)

s.t. Ax = b

where H ∈ Rq×q is a symmetric positive semi-definite matrix,
A ∈ Rp×q , g ∈ Rq and b ∈ Rp. The Lagrangian of this
problem writes,

L(x, z) =
1

2
x>Hx+ g>x− z>(Ax− b), (15)

where z ∈ Rp is the dual variable. The solution to the problem
verifies

x∗, z∗ = arg min
x

max
z
L(x, z) (16)

and the KKT conditions(
H A>

A 0p×p

)(
x∗

−z∗
)

=

(
−g
b

)
. (17)

When applied to the dual part of the QP (14), the proximal
point algorithm can be written as

xk+1, zk+1 = arg min
x

max
z
L(x, z)− ρ

2
‖z − zk‖22, (18)

where the minus sign in front of the term −ρ2‖z−z
k‖22 comes

from the maximization over the dual variable z. The solution
of the proximal iteration defined in Eq. (18) is obtained by
solving the following system of equations(

H A>

A −ρId

)(
xk+1

−zk+1

)
=

(
−g

b− ρzk
)
. (19)

This approach is widely used in optimization and at the core
of several optimization solvers [51, 4] and algorithms [10]
for solving constrained dynamical problems.

Link between proximal and compliance terms. Going back
to the simulation of constrained systems, one should notice the
similarity between (8) and (19). Interestingly, drawing parallels
between these two systems, the proximal regularization acts as
a numerical compliance, thus making the iterates (19) always
well-defined. However, due to different regularization terms
in (11) and (18), the effect of the proximal operator differs



from a standard mechanical compliance. This translates into
a shift in the right-hand side of (19) through the term −ρzk.
As further discussed in [45], this term cancels out over the
iterations, making the proximal solution converge towards the
solution of the original rigid problem (17). Therefore, proximal
regularization can be seen as a numerical technique akin to
vanishing compliance.

E. Modeling frictional unilateral contacts: the Nonlinear
Complementary Problem

Previously described equations govern the motion of
systems under equality constraints, i.e., bilateral constraints.
However, punctual contact interactions are subject to three
main modeling hypotheses: the unilateral contact constraint,
the Coulomb friction law, and the Maximum Dissipation
Principle (MDP). Next, we detail these principles and the
problem they induce.

Unilateral contact hypothesis. Through the unilateral
hypothesis, one assumes that objects cannot interpenetrate,
yielding the following inequality:

Φ(q)N ≥ 0, (20)

where Φ(q) ∈ R3nc denotes the separation vector [19] defined
as the minimum norm translation vector putting two shapes at
a null distance, nc being the number of contact points, and the
subscripts N and T refer to the normal and tangential indices,
respectively.

By duality, such a constraint induces contact forces
λ ∈ R3nc that can only act in a repulsive fashion and when
objects are in contact, i.e., when Φ(q)N = 0. These constraints
are summarized by the Signorini condition [48]

0 ≤ λN ⊥ Φ(q)N ≥ 0. (21)

where a ⊥ b for vectors a and b means a>b = 0.
We use an impulse-based formulation to deal with rigid

dynamics and impacts. Applying the Euler symplectic scheme
to discretize (3) leads to

M(vt+1 − vf ) = J>c λ (22)

where λ now denotes an impulse, vf = ∆tv̇f , ∆t being the
time step, and Jc ∈ R3nc×nv is the Jacobian of Φ. Here,
the choice of integration scheme only requires one costly
evaluation of M , Jc, vf at the current time step qt, vt. More
involved implicit integrators could be envisaged to improve
stability, but they would also need to evaluate these operators
multiple times. In particular, they would require multiple
calls to the contact-detection and rigid-body algorithms, which
can be computationally expensive. As was done earlier, the
Signorini condition can be written in impulse via index
reduction [41]

0 ≤ λN ⊥ (Jcv
t+1 + γ)N ≥ 0 (23)

where γ is equal to Φ(qt) plus previously mentioned corrective
terms. We note c = Jcv

t+1 ∈ R3nc the contact point
velocities.

Similarly to the bilateral case from Sec. II, any contact
constraint can be made compliant by modifying the Signorini
condition

0 ≤ λN ⊥ (Jcv
t+1 + γ +Rλ)N ≥ 0. (24)

The additional compliance term of (24) introduces possible
interpenetration which can be used to model soft bodies. More
involved deformation models based on the finite element
method [46] are also used in robotics [36] but requires an
extra computational cost.

Coulomb’s law of friction is generally employed to model
dry friction via

∀i, λ(i) ∈ Kµ(i) (25)

where Kµ(i) = {λ(i) ∈ R3| ‖λ(i)T ‖2 ≤ µ(i)λ
(i)
N } is the second-

order friction cone, µ =
(
µ(1), . . . , µ(nc)

)
∈ Rnc>0 is the vector

of coefficient of frictions and the superscript (i) refers to the
indices associated with the i-th contact point. By noting the
Cartesian product Kµ =

∏nc
i=1K(i), (25) can be aggregated

into λ ∈ Kµ.

Maximum dissipation principle. In addition, the maximum
dissipation principle (MDP) [41] states that, whenever a
contact point is sliding, friction impulses should maximize the
dissipated power

∀i, λ(i)
T = arg min

βT ,‖βT ‖≤µ(i)λ
(i)
N

β>T c
(i)
T . (26)

where c is the contact point velocity previously defined.
Nonlinear complementary problem. Finally, combining
equations (22), (24), (25), (26), λ verifies the following NCP

Kµ 3 λ ⊥ σ + Γ(σ) ∈ K∗µ (27)

where K∗µ = K 1
µ

is the dual friction cone of Kµ,
G = JcM

−1J>c is the so-called Delassus matrix [16],
g = Jcvf + γ is the free contact point velocities
plus corrective terms, and we use the shorthand
notation σ = (G + R)λ + g. We use the notation
Γ(σ) =

(
Γ(1)(σ(1)) . . . Γ(nc)(σ(nc))

)
∈ R3nc with

Γ(i)(σ(i)) =
(

0 0 µ(i)‖σ(i)
T ‖
)
∈ R3 denoting the De

Saxcé correction [15].

F. Existing solvers

Due to the non-convexity and nonsmoothness of the
complementarity constraint, the nonlinearity of the DeSaxcé
correction, and the ill-conditioning of the Delassus matrix G,
the NCP (27) is known to be a numerically hard problem to
solve in general [2].

A first class of simulators, e.g., ODE [49], PhysX [37],
DART[34], proceed by linearizing the friction cones to get
an approximate but more tractable Linear Complementarity
Problem (LCP). LCPs are well-studied [13] and can be solved
with the Projected Gauss-Seidel (PGS) algorithm. As a first-
order algorithm, PGS is not affected by null eigenvalues due



TABLE I
CHARACTERISTICS OF THE CONTACT SOLVERS IN ROBOTICS.

Physics engine Complementarity problem Contact type Algorithm

ODE[49], PhysX[37], DART [34] LCP hard PGS
Bullet[14] NCP hard PGS

MuJoCo[54], Drake [53] CCP soft non-smooth Newton
RaiSim[27] -∗ hard per-contact bisection

Dojo[26] NCP hard Interior Point
Ours NCP hard & soft ADMM

∗RaiSim does not model the contact problem as a complementarity problem.

to hyperstaticity but is sensitive to the conditioning of the
Delassus matrix G, thus hindering robustness. In its recent
versions, Bullet [14] implements a similar PGS algorithm
working on the original second-order friction cone.

An alternative approach, notably adopted in MuJoCo[54]
and Drake[53], consists in ignoring the DeSaxcé correction
in (27), which has the effect of relaxing the Signorini
condition [33]. This leads to a Cone Complementarity Problem
(CCP) which is equivalent to a convex Second-Order Cone
Programming (SOCP) problem [6]. Such a problem can
be solved via robust off-the-shelf optimization algorithms
benefiting from strong guarantees. In this respect, a previous
work [52] uses an ADMM algorithm to solve this problem.
In MuJoCo [54] and Drake [53] simulators, the hyperstatic
cases are handled by systematically adding compliance to the
problem, thus making it impossible to simulate purely rigid
systems.

Raisim [27] uses a specific contact model enforcing the
Signorini condition, which combines favorably with its custom
per-contact bisection algorithm. Despite its computational
efficiency, this approach inherits the sensitivity to conditioning
from Gauss-Seidel-like techniques.

Dojo [26] avoids any physical relaxation and uses an
Interior Point (IP) algorithm to solve (27). As a second-order
algorithm, Dojo’s solver can handle ill-conditioned problems.
However, just like IP algorithms, the resulting algorithm is
difficult to warm-start and requires an expensive Choleksy
computation at each iteration, which makes the approach time-
consuming, and thus limits its range of applications, notably
in the context of real-time control scenarios.

III. EFFICIENT SOLVING OF FRICTIONAL CONTACT
DYNAMICS

In this section, we detail the central contribution of this
paper, namely a novel algorithm to solve NCPs of the form of
problem (27). At the core of our approach, is the development
of a new ADMM method and update strategy, enabling us
to solve complex contact problems, that might be poorly
conditioned, as it might occur in contact mechanics problems.

A. NCP as a cascade of optimization problems

The NCP formulated in (27) corresponds to the solving of
the interweaving problems of the form

λ = arg min
f∈Kµ

1

2
f>(G+R)f + f> (Γ(σ) + g) , (28a)

and
σ = (G+R)λ+ g . (28b)

Indeed, if we denote by z ∈ K∗µ the dual variable associated to
the primal variable λ ∈ Kµ, the Lagrangian of Problem (28)
reads

L(f , z) =
1

2
f>(G+R)f + f> (Γ(σ) + g)− f>z. (29)

The optimality conditions are thus given by canceling the
gradient of L w.r.t. f at the optimal solution (λ, z∗)

∇fL(λ, z∗) = (G+R)λ+ g + Γ(σ)− z∗ = 0, (30)

and the fact that

Kµ 3 λ ⊥ z∗ ∈ K∗µ. (31)

Injecting (30) into (31), leads to the nonlinear complementarity
conditions of (27).

Interestingly, (28a) appears to be a convex problem
which proves to be useful as it allows sub-steps of our
ADMM approach to be performed efficiently. However, the
interweaving of (28a) and (28b) through the non-smooth de
Saxcé function Γ makes the problem (27) difficult to solve in
general by standard optimization techniques [2]. As discussed
in [2], one approach consists in incorporating estimates of
Γ(σ) (which is equal to Γ(z∗)), via the updates of a variable
named s, inside the solving of (28a). More specifically, this
results in a cascade of optimization problems and is done
by setting, at the kth iterate, sk = Γ(zk) (Alg. 1, line 2),
corresponding to the nonlinear term in (28) considered as
constant, then solving (28a) (Alg. 1, line 4) and updating zk
(Alg. 1, line 6) from the new optimal force vector fk. The
solving of this cascade of problems continues until the primal
and dual optimal convergence criteria have been met up to a
certain numerical tolerance εabs.

This cascaded strategy has shown to be effective in
practice [2]. A critical part involves solving the inner
optimization problem (28a) efficiently, which is nothing more
than a Quadratically Constrained Quadratic Program (QCQP).
One approach could thus consist in leveraging existing SOCP



solvers, such as ECOS [18] or SCS [43]. Yet, because of their
high level of versatility, such off-the-shelf solvers tend to be
less efficient when considering a specific class of problems
such as the ones occurring in contact mechanics [2]. Following
this line of thought, we instead propose to develop a dedicated
and efficient ADMM approach for solving 28a, particularly
suited for solving ill-conditioned problems.

B. Proximal ADMM formulation

By introducing a slack variable y such that y = f , the
QCQP (28a) is made separable as follows

min
f ,y

h1(f) + h2(y) (32a)

s.t. f = y , (32b)

where h1(f) := 1
2f
>(G + R)f + f>(s + g) is a smooth

convex function with s being the current estimate of Γ(σ),
and h2(y) := IKµ(y) is the nonsmooth indicator function
associated with the convex cone Kµ defined as

IKµ(y) =

{
0, if y ∈ Kµ
+∞, otherwise

.

By naming z the dual variable associated with (32b), the
augmented Lagrangian of problem (32) reads

LAρ (f ,y, z) = h1(f)+h2(y)−z>(f−y)+
ρ

2
‖f−y‖22 (33)

where ρ is the augmented Lagrangian penalty term [5]. LAρ
defined in (33) can be equivalently rewritten as

LAρ (f ,y, z) = h1(f)+h2(y)+
ρ

2

∥∥∥∥f − y − zρ
∥∥∥∥2
2

− 1

ρ
‖z‖22 .

(34)
Finally, to make the sub-problem associated to h1 strongly

convex w.r.t. f , we propose to add the proximal term
η
2‖f − f

−‖22 to LAρ , leading to

LAρ,η(f ,y, z) = h1(f) +
η

2
‖f − f−‖22 + h2(y)

+
ρ

2

∥∥∥∥f − y − zρ
∥∥∥∥2
2

− 1

ρ
‖z‖22 , (35)

where f− is the previous estimate of f . This proximal
term affects the conditioning of the problem by adding
a regularization to the Hessian of h1, which will play
an essential role in the update strategy further detailed in
Sec. III-F. η is fixed and typically set to a value of 10−6.

C. Pseudocode of the ADMM updates

Solving the saddle-point point problem associated with the
proximal augmented Lagrangian LAρ,η defined in (35) can be
efficiently done via ADMM iterates. The updates are defined
by the following successive optimization steps:

fk = arg min
f

LAρ,η(f ,yk−1, zk−1) (36a)

yk = arg min
y

LAρ,η(fk,y, zk−1) (36b)

zk = zk−1 − ρ(fk − yk) . (36c)

Fig. 2. Compliant contacts. Our contact solver can handle both purely
rigid (left) and compliant contacts (right).

We now detail the content of each sub-computations of (36).
The first equation (36a) corresponds to the solving of an
unconstrained quadratic problem, whose solution is given by:

fk = − (G+R+ (η + ρ)Id)
−1

(g + sk − ηfk−1 − ρyk−1 − zk−1) . (37)

It is worth noting that (37) is always well-defined because
of the proximal regularization. This allows our ADMM
approach to handle both compliant and purely rigid contacts
as illustrated in Fig.2. The second equation (36b) can be
explicitly written as:

yk = arg min
y∈Kµ

ρ

2

∥∥∥∥fk − zk−1ρ − y
∥∥∥∥2
2

. (38)

It corresponds to the orthogonal projection of the vector
fk− zk−1

ρ on the Cartesian product of friction cones Kµ, also
denoted by:

yk = P Id
Kµ

(
fk −

zk−1
ρ

)
(39)

The third equation (36c) corresponds to the classic augmented
Lagrangian multiplier updates [5].

D. Primal and dual convergence criteria

As classically done in the ADMM settings, the primal
and dual residuals associated with the augmented Lagrangian
function LAρ,η at the kth iterates are respectively given by

rprim
k = fk − yk , (40)

and
rdual
k = η(fk − fk−1) + ρ(yk − yk−1) . (41)

In addition, we use a contact complementarity residual defined
as

rcomp
k =

(
|f (1)>
k z

(1)
k | . . . |f (nc)>

k z
(nc)
k |

)
. (42)

The iterations of ADMM have converged to precision εabs
when:

‖rprim
k ‖∞, ‖r

dual
k ‖∞, ‖r

comp
k ‖∞ ≤ εabs (43)

A typical set of values for εabs which offers a good
compromise between realistic simulation (compared to



alternative resolution methods) and computation times to solve
the NCP problems is [10−4; 10−6]. We choose to use the
infinity norm (‖.‖∞) as it is independent of the problem
dimensions. As explained in [45], it is also possible to
introduce relative convergence criterion, as done in many
optimization solvers of the literature [43, 4], to account for
the potential stagnation of the optimization variables due to
the numerics.

E. Exploiting problem sparsity

Over the three main steps of the ADMM recursion (36),
the last two (36b) and (36c) are cheap operations of linear
complexity w.r.t. the problem dimensions. The most complex
operation lies in the resolution of the linear system in
Eq. (36a), and detailed in Eq. 37. It notably requires the
inversion of the augmented Delassus matrix, denoted by
GRρ,η := G+R+ (η + ρ)Id in the sequel. Interestingly, the
additional terms R + (η + ρ)Id only modify the diagonal of
the Delassus matrix G with positive elements. In other words,
both the sparsity of the Delassus matrix and the positivity are
preserved, allowing to directly call sparse or dense Cholesky
methods to decompose the augmented Delassus GRρ,η .

Additionally, in the case of kinematics algorithms composed
of multiple joints including loop-closure, one can leverage
branch-inducing sparsity algorithms [22] to efficiently evaluate
the Delassus matrix [21, 47] or directly obtain its Cholesky
decomposition at a reduced cost [10]. Finally, it is worth
noticing that, as soon as the ADMM penalty term ρ is updated,
it requires the full Cholesky refactorization of GRρ,η . In other
words, to lower the computational footprint induced by the
successive Cholesky factorizations, it is essential to lower the
number of updates of ρ. This motivates the introduction of
the spectral update rule for ρ, detailed in the next subsection,
which is experimentally validated in Sec. V.

F. ADMM parameters update strategies

The convergence rate of the ADMM methods is directly
related to the value of the augmented penalty term ρ [45].
Choosing this value directly depends on input problem values
(G,R, g and Kµ). There is no automatic procedure to choose
the best ρ which will lower the number of iterations to reach
the desired primal/dual accuracy εabs.

Linear update rule. From a given initial value ρ, a well-
known strategy is to linearly update ρ according to the ratio
between primal and dual residuals rprim

k /rdual
k , following the

update rule at the kth iterate

ρnew =


τ incρ if ‖rprim

k ‖∞ ≥ α‖rdual
k ‖∞

ρ/τ dec if ‖rdual
k ‖∞ ≥ α‖r

prim
k ‖∞

ρ, otherwise ,
(44)

where τ inc > 1 and τ dec > 1 are increment/decrement factors,
and α > 1 is the ratio parameter between primal and dual
residuals. The overall idea is to maintain the trajectory of
primal and dual residual norms within a tube of diameter α.
Yet, if the problem is poorly conditioned, this linear update

rule will often trigger many updates of ρ, thus requiring each
time to recompute the Cholesky factorization associated with
the nonsingular augmented Delassus matrix GRρ,η .

Spectral update rule. To overcome the inherent limitations
of the standard linear ADMM update rule, we introduce a
new update strategy that accounts for the spectral properties
of the augmented Delassus matrix GRρ,η . More precisely, our
approach is inspired by the work of Nishihara et al. [42] which
provides a convergence analysis of a generic class of ADMM
formulations, including ours depicted by (32). Their analysis
assumes that the ADMM penalty parameter ρ is of the form

ρ :=
√
mL κp , (45)

where m is the strong convexity parameter of h1 and L is the
Lipschitz constant associated with ∇h1, where h1 refers to the
smooth convex function in the ADMM formulation (32). As h1
is a quadratic function, m and L respectively correspond to the
lowest and largest eigenvalues of GRρ,η . The ratio κ := L/m is
the condition number of h1 and GRρ,η . p is the free exponent
parameter directly balancing the contribution of the condition
number κ in the choice of ρ.

While in [42] p is assumed to be constant, we suggest
adjusting its value according to the ratio between primal and
dual residuals ‖rprim

k ‖∞/‖rdual
k ‖∞, in the spirit of the linear

update rule recalled previously. More precisely, we propose
this selection strategy

pnew =


p+ pinc if ‖rprim

k ‖∞ ≥ α‖rdual
k ‖∞,

p− pdec if ‖rdual
k ‖∞ ≥ α‖r

prim
k ‖∞,

p, otherwise ,
(46)

ρnew =
√
mL κpnew ,

where pinc and pdec are increments on the exponent parameter
p. A typical value is pinc = pdec = 0.05. As for the linear
update rule, α > 1 is the ratio parameter between primal
and dual residuals, forcing the primal and dual residual norms
to lie within a tube of diameter α. To the best of the
author’s knowledge, this spectral update strategy is novel and
directly scales the ADMM update parameter according to the
smoothness of the NCP problem.

It is worth noticing that the proposed solution only considers
the lowest and largest eigenvalues of GRρ,η , which can be easily
estimated from the power iteration algorithm for instance,
which, in practice, converges in very few iterations compared
to the problem dimensions. Finally, thanks to the presence of
the proximal term added in (35), we have m ≥ η > 0, which
guarantees the well-posedness of the strategy.

G. Pseudocode

Algorithm 1 summarizes our ADMM-based approach for
solving the NCP (27) problem of frictional contacts simulation.
It takes as inputs the contact problem parameters, such as the
Delassus matrix G, the free contact point velocities g, the
Cartesian product of the friction cones Kµ, the compliance
matrix R, as well as a desired precision εabs. The outputs of



Alg. 1 at line 13 correspond to both the optimal contact forces
λ and the contact point velocities σ. This last quantity can be
directly obtained from the dual variable z of the NCP problem,
which corresponds to the sum of the contact point velocity
σ = (G+R)λ+ g and the DeSaxé corrective term Γ(σ).

Algorithm 1: Pseudocode of the ADMM algorithm for
NCP for rigid and compliant contacts.
Input: Delassus matrix G, free contact point velocities

g, friction cones Kµ, compliance R, desired
precision εabs.

Output: Contact impulses λ and contact velocities σ
1 for k = 1 to niter do

/* ADMM updates */
2 sk ← Γ(zk−1) ;
3 fk ← −(G+R+ (η + ρ)Id)

−1

4 (g + sk − ηfk−1 − ρyk−1 − zk−1) ;

5 yk ← P Id
Kµ

(
fk − zk−1

ρ

)
;

6 zk ← zk−1 − ρ (fk − yk);
/* Primal/dual criteria evaluation

*/
7 compute the primal/dual convergence criteria given

by (40), (41) and the stopping criteria (43);
8 if converged then
9 break;

10 end
/* Update ρ */

11 Update ρ according to the spectral strategy
described in Sec. III-F.;

12 end
13 λ← yk and σ ← zk − Γ(zk);

IV. INVERSE DYNAMICS

We now consider the inverse dynamics problem,
corresponding to the search of the torque τ and the
contact impulses λ that induce a given joint velocity vref.
Starting from the NCP (27) formulation and enforcing the
contact point velocities to be equal to Jcvref yields the inverse
dynamics problem,

Kµ 3 λ ⊥ σ + Γ(σ) ∈ K∗µ (47)

σ = Rλ+ Jcvref + γ.

We recall that, from KKT conditions, a solution of (47) should
minimize

min
λ∈Kµ

1

2
‖λ+R−1(Jcvref + γ + s)‖2R (48)

where s = Γ(σ). This corresponds to the projection
on Kµ under the metric induced by R, so we note
PRKµ(−R−1(Jcvref + γ + s)) the minimizer of (48). We
observe the formulation of (48) becomes ill-defined for the
purely rigid case R = 0. Indeed, as described previously
(Sec. II), the rigidity often makes the problem of contact

impulses under-determined and thus non-invertible. As was
done in the case of forward dynamics (Sec. III), we aim to
preserve the rigid contact hypothesis by leveraging proximal
optimization. For the case of inverse dynamics, iterating the
proximal operator associated to (48) (Alg. 2, line 3) allows to
find a λ verifying (47) even in the rigid case.

At this stage, it is worth noting that (47) has the same
structure as (27) and is also an NCP. Therefore, one could
have used the algorithm introduced in Sec. III (Alg. 1) to
solve it. However, one notable difference between (27) and
(47) is the absence of the Delassus matrix in the latter,
which has been replaced by the compliance matrix R. Most
often, the compliance matrix has a diagonal structure of the
form R = Diag(R

(1)
T , R

(1)
T , R

(1)
N , . . . , R

(nc)
T , R

(nc)
T , R

(nc)
N )

which can be exploited to design a more efficient
algorithm. Indeed, in the case of a diagonal matrix
D ∈ R3nc×3nc , the operator PDKµ can be computed
analytically via the equality PDKµ(x) = D−

1
2P Id
Kµ̃(D

1
2x)

with µ̃ =

(√
D

(1)
T

D
(1)
N

µ(1) . . .

√
D

(nc)
T

D
(nc)
N

µ(nc)

)
which makes

the iterations of Alg. 2 computationally cheap.
Once contact forces are determined, the torque τ can be

retrieved with a call to the Recursive Newton-Euler Algorithm
(RNEA) (Alg. 2, line 5). It is worth noticing that the
contribution of the contact torque τc = J>c λ can be accounted
for through the backward sweep of the RNEA algorithm, thus
efficiently exploiting the sparsity induced by the kinematic
tree, in the spirit of rigid-body dynamics algorithms [22].

Algorithm 2: Pseudo-code of the proximal algorithm
for Inverse Dynamics.

Input: Joint velocity vref, compliance R, contact
Jacobian Jc, friction cones Kµ

Output: Torque τ , contact impulses λ
1 for k = 1 to niter do
2 s← Γ(Rλ+ Jcvref + γ) ;
3 λ← PR+ρId

Kµ (−
(
R+ ρId

)−1
(Jcvref + γ + s− ρλ));

4 end
5 τ ← RNEA(q,v,vref)− J>c λ ;

V. EVALUATIONS AND BENCHMARKS

In this section, we evaluate our approach to challenging
robotics scenarios and benchmarks from the computational
mechanics community. In particular, we measure performances
in terms of the number of iterations required to converge and
computational timings. We also validate our inverse dynamics
algorithm by performing a control task involving contact
interactions with a UR5 arm. Additional results are available
in the companion video (https://youtu.be/i qg9cTx0NY?si=
NGtx1tiYrIGtHXSK).

A. Simulation benchmarks: standard robotics systems

Our solver has been implemented in C++, leveraging the
Eigen library [23] for efficient linear algebra, the Pinocchio

https://youtu.be/i_qg9cTx0NY?si=NGtx1tiYrIGtHXSK
https://youtu.be/i_qg9cTx0NY?si=NGtx1tiYrIGtHXSK


Fig. 3. Robotics systems. We evaluate our approach on common robotics scenarios occurring during locomotion, e.g., Talos falling on the ground (left),
Solo walking on steep terrain (center), and manipulation, e.g., Allegro hand interacting with cubes (right).

framework [8, 9] for efficient rigid body algorithms, which
comes with the HPP-FCL library [44] for fast collision
detection. As baselines, we have also implemented the
over-relaxed PGS algorithm [31] and used the state-of-the-art
SCS solver [43] to solve the CCP relaxation. Our experiments
are done on a MacBook Pro with a M1 Max CPU. For all
the benchmarks, we use a time step ∆t of 1ms and set the
proximal value η to 10−6.

Convergence analysis. We evaluate the convergence speed of
our algorithm by monitoring the evolution of the convergence
criteria ‖rdual

k ‖∞ and ‖rcomp
k ‖∞ across iterations (‖rprim

k ‖∞
being null due to projection steps). The study is done on
two different contact problems. The first one is a stack of
rigid boxes of different masses (between 1 and 104kg) hit
by a ball of 103kg (Fig. 1). Stacking objects of high mass
ratios induces bad conditioning of the Delassus matrix G
(these ratios are of 10 for the Talos scene and 104 for the
wall of cubes). Therefore, this scene allows us to evaluate
the numerical stability of the solvers. For the second one, we
study a problem obtained with the humanoid robot Talos [50]
falling on the ground, whose 36-dof kinematic chain induces
a complex inertial coupling between all the contact points
through the Delassus matrix. Additionally, we use these two
scenarios to perform an ablation study on the benefits of using
the spectral update rule for the ADMM parameter adaption.

As shown by Fig. 4, the per-contact strategy of PGS loops;
this undesired behavior is explained by the fact that these
problems involve high mass ratios and strongly coupled
contact forces. On the opposite, our ADMM-based algorithm
exploits the Cholesky decomposition of GRρ,η which allows
it to be insensitive to the conditioning and to capture the
coupling between individual contact problems. Figure 4
also demonstrates how leveraging the spectral information
to update adapt ρ leads to an improved convergence rate
w.r.t. the linear update rule. Therefore, our approach can
efficiently solve the two problems at a high precision
threshold εabs = 10−9.

Timings. When evaluating timings, we cover a range of
contact types that aim to be wide enough to represent robotics
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Fig. 4. Convergence analysis. Convergence of the dual feasibility (left)
and complementarity (right) is monitored across iterations on the contact
problems obtained from simulating a stack of cubes (top row) and the Talos
robot (bottom row).

applications. To do so, we consider four distinct scenarios
(Fig. 1,3). For the first two, we reuse the setups of the
convergence analysis: a stack of boxes of different masses
(around 60 contact points) and a humanoid falling on the
ground (around 10 contact points). As a third experiment, we
simulate an Allegro hand holding a stack of cubes, a classical
setup in manipulation applications. Finally, we evaluate our
approach on a more dynamic task: a quadruped moving on a
steep terrain (Fig. 3). The walking motion is generated via an
MPC controller, which produces reactive behavior and results
in a wide range of contact types, notably many breaking and
sliding contacts.

For each benchmark, we average on a trajectory the
computational time necessary to reach a fixed precision
(εabs = 10−4) or to hit the maximum number of iterations
(niter = 103). Figure 5 summarizes our evaluation of timings
on robotics systems. We observe that our algorithm performs
consistently well in different scenarios compared to the PGS
and SCS algorithms, even when they operate on the relaxed
CCP problem. In particular, we note a significant performance
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Fig. 5. Timings on robotics systems. Thanks to its combination of automatic
spectral adaptation (Sec.III-F) and sparse Cholesky update (Sec. III-E), our
algorithm (in red) yields a stable behavior across the various robot simulations.

gap between ADMM and PGS when the complexity of the
structure of the inertia grows, as is the case for the hand,
the humanoid, and the stack of cubes. As shown during
the convergence analysis, the complex coupling induced by
G can slow down per-contact approaches and even hinder
convergence. It is also worth noting that our algorithm does
not require any hyperparameter tuning across the various
considered scenarios. Indeed, ρ is automatically scaled via
the spectral rule, which induces a reduced computational
overhead when combined with rigid body algorithms for the
Cholesky updates.

B. Comparison against state-of-the-art physics engines

We implemented our algorithm in a C++ simulation loop,
building on top of Pinocchio [8] for rigid body dynamics
and HPP-FCL [44] for collision detection. We evaluate
our approach against the state-of-the-art simulators MuJoCo,
Drake, and Bullet on three scenarios of increasing complexity
in terms of degrees of freedom: a UR5 robotic arm, a Cassie
robot, and the MuJoCo humanoid. For each benchmark, we
simulate the robot for 2 seconds without any actuation or
damping in the joints. For all simulators, joint limits are
not taken into account. The MuJoCo Humanoid is made of
capsules for collisions, while the UR5 and Cassie robots use
convex meshes (which can reach up to 1000 vertices per
body). All possible pairs of bodies are considered for collision
detection, except the successive pairs in the kinematic chain.
Performance is measured by the number of time steps per
second on a single thread of an Apple M1 Max CPU. The
results are reported in Fig. 6. The ADMM solver embedded
in a simulation loop depicts competitive results compared to
alternative solutions in the robotics literature.

It is worth noticing that this is a preliminary benchmark. A
more detailed one (involving additional metrics, more physical
systems, and comparisons to real data) would benefit the
robotics community but would require a dedicated study. We
leave this benchmarking study as future work.
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Fig. 6. Comparison against SOTA physics simulators. Performances
are reported for a UR5 arm (top), and a Cassie robot (middle), the MuJoCo
simple humanoid (bottom).

C. Complex scenarios of computational mechanics

In this section, we leverage the collection of complex
contact problems provided in the FCLIB benchmark
collections [1]. These problems correspond to a set of
various mechanical problems identified as challenging by the
computational mechanics community. We focus on three main
categories of problems: BoxesStack, Chain, and Capsules.
The size and properties of this dataset are reported in Tab. II.

Timings. We benchmark our solver against PGS on the
three aforementioned scenarios. We request a precision of
εabs = 10−6 on both solvers. Due to the size of the problems,
we exploit the sparse Cholesky solver coming with Eigen to
account for the sparsity of the contact problems.

We use performance-profile distributions [17], a metric
to fairly compare optimization solvers in the optimization
community. More precisely, for a given solver, it measures the
ratio of problems solved which are τ times slower than the
best solver for a given problem. We refer to [17] for further
details. The performance-profile distributions are reported in
Fig. 7 for the three categories. These plots show that our
solver significantly outperforms PGS on the complex contact
problems collected in the FCLIB dataset. On problems from
BoxesStack and Capsules, we observe that PGS is not able
to converge to the desired accuracy and reach the maximum
number of iterations niter set to 20.000.



Fig. 7. Performance profiles curves on a subset of the FCLIB dataset.

Category # Problems nc Dofs friction µ

BoxesStack 255 [0:200] [6:300] 0.7
Chain 242 [8:28] [48:60] 0.3

Capsules 249 [0:200] [6:300] 0.7

TABLE II
PROBLEMS OF THE FCLIB DATASET [1].

Empirical evaluation of the spectral and linear ADMM
updates. In section III-F, we have motivated the introduction
of the spectral update strategy as a way to reduce the number
of Cholesky factorization updates involved in the ADMM
algorithm 1, which is the most computationally demanding
part of the ADMM solver. We evaluate this assertion by
evaluating the mean number and the standard deviation of
Cholesky updates over the BoxesStack, Chain, and Capsules
problem categories. We notably vary the linear parameter τ
and spectral parameter p.

The results are reported in Tab. III. Depending on the
problem category, the linear update strategy tends to produce
higher standard deviations and mean numbers of Cholesky
updates than the spectral rule. The spectral rule provides
the most consistent statistics with lower updates and is less
sensitive to the class of problems to solve, with an average
of a dozen Cholesky updates. We also report in Tab. IV the
mean timings to solve a given problem. These timings are
consistent with the mean number of Cholesky updates reported
in Tab. III, in the sense that best timings are obtained for the
spectral update rule depicting the lowest number of Cholesky
updates.

D. Inverse dynamics

We evaluate our approach for inverse dynamics on the
control problem consisting of finding the torque to slide the
end effector of a robotic arm (UR5) on a wall where the
contact is assumed to be purely rigid R = 0 (Fig. 8). The
reference joint velocity vref is such that the contact point
velocity is cref = Jcvref is tangent to the wall, i.e., crefN = 0.

When setting ρ to 10−8, the approach proposed in Sec. IV
requires only one iteration to find a solution with a precision of
εabs = 10−6. One should note that the proximal regularization
is necessary due to the rigid contact hypothesis. On Fig. 8, we
evaluate the benefits of incorporating the iterative De Saxcé
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Fig. 8. Inverse dynamics is used to slide the end-effector of a UR5 on a
wall (top left). The desired tangential contact velocity is infeasible with the
CCP model which causes divergence of both the joint (τ ) and contact (τc)
torques, while our approach robustly converges for the NCP formulation (top
right). The normal (bottom left) and tangential (bottom right) contact forces
computed by the inverse dynamics algorithm are consistent with the forward
dynamics solution.

correction (Alg. 2, line 2) and work directly with the NCP (27)
model. When setting this corrective term to 0 which exactly
corresponds to the CCP contact model, we observe that the
contact torque τc and thus the actuation torque τ diverge.
Indeed, for a sliding motion, cref /∈ K∗µ which causes the
desired motion to be infeasible in the sense of CCP.

VI. DISCUSSION

The closest to our work are the approaches of MuJoCo [54]
and Drake [11], which tend to solve linear systems coupling
all the contact points together, by inverting a matrix
containing the Delassus contact matrix. Unlike per-contact
approaches [49, 14], we exploit the Cholesky decomposition
of the Delassus matrix to jointly update contact forces,
which improves robustness. As explained in Sec. III, such
Cholesky decomposition can be efficiently computed by
leveraging the sparsity pattern induced by the kinematic
trees of robots composing the scene. Moreover, we alleviate
the computational footprint by reducing the number of
these Cholesky re-factorizations via a spectral adaptation of



TABLE III
COMPARISON OF THE NUMBER OF CHOLESKY UPDATES BETWEEN LINEAR AND SPECTRAL UPDATE STRATEGIES

Linear Spectral

Category τ = 2 τ = 4 τ = 8 τ = 16 p = 0.01 p = 0.05 p = 0.08

BoxesStack 9.20± 2.48 6.12± 1.75 5.85± 2.47 6.12± 2.40 11.26± 4.99 5.02± 2.40 3.97± 1.76
Chain 5.74± 1.53 8.76± 69.93 33.7± 212.77 25.48± 154.88 7.87± 6.55 2.76± 1.65 3.61± 20.48

Capsules 4.58± 1.71 3.09± 2.01 3.60± 2.94 4.6± 2.06 5.57± 4.85 2.30± 1.50 2.12± 1.01

TABLE IV
COMPARISON OF THE MEAN TIMINGS, IN MS, BETWEEN LINEAR AND SPECTRAL UPDATE STRATEGIES

Linear Spectral

Category τ = 2 τ = 4 τ = 8 τ = 16 p = 0.01 p = 0.05 p = 0.08

BoxesStack 2.16± 1.80 1.73± 1.55 1.76± 1.80 1.95± 1.87 2.56± 2.03 1.55± 1.60 1.51± 1.76
Chain 0.527± 0.417 0.637± 0.373 1.61± 7.84 1.34± 6.82 0.445± 0.53 0.321± 0.304 0.494± 0.301

Capsules 2.86± 1.90 2.50± 1.92 1.95± 1.35 1.69± 1.20 2.17± 1.38 1.72± 1.09 1.63± 1.10

the ADMM parameter. In terms of physical realism, our
improvement is twofold: we do not relax the Signorini
condition, i.e., our simulator does not exhibit forces at
distance, and we make it possible to simulate purely rigid
systems (R = 0). Optionally, by setting De Saxcé corrective
term to zero, we robustly solve the convex formulation of
these simulators and retrieve convergence guarantees. For
future work, further experiments should be conducted to
evaluate to what extent avoiding simulation artifacts related
to relaxations [25, 33] tightens the reality gap of simulators
[20, 36] and how a reduced gap impacts downstream tasks.

Our approach also influences the formulation of the inverse
dynamics. As shown by Todorov [54], in the case of MuJoCo
and Drake, the convex relaxation and the compliance make
the dynamics invertible. Because we also encompass rigid
contacts, we cannot assume the mapping between joint
velocities and contact forces to be uniquely defined (e.g.,
hyperstatic scenarios). Using a proximal algorithm allows
handling ill-defined cases (i.e., nonunique solution) and
converges toward one possible solution of the inverse problem
on forces. Moreover, via the iterative DeSaxcé correction, we
preserve the NCP formulation. This enables us to invert the
dynamics of motions that were previously infeasible in the
sense of the CCP, for instance for sliding motions.

In a parallel line of research, a recent growing effort
has been made to port classical simulators such as MuJoCo
and PhysX to hardware accelerators e.g. GPUs and TPUs,
which resulted in MuJoCo XLA and Isaac Gym [38]. These
architectures provide high parallelization capabilities, but they
impose hard constraints on the design of contact models and
algorithms. The approach introduced in this paper focuses on
exploiting the versatility and efficiency of modern CPUs to
achieve physically accurate simulation at competitive rates.
However, it seems promising for future work to adapt it in
order to leverage hardware accelerators.

VII. CONCLUSION

In this paper, we have introduced an ADMM-based
algorithm to solve the NCP associated with the simulation

of dynamics involving rigid frictional contacts. We have
evaluated our approach to challenging benchmarks from both
the robotics and computational mechanics communities. Our
rich set of experiments demonstrates that we can robustly
simulate a wide range of scenarios while keeping a limited
computational burden and avoiding physical relaxation.

The current approach could still be improved by gaining
timings on the collision detection routine corresponding to
the bottleneck. Similarly, rigid-body dynamics algorithms for
constrained dynamical systems still represent an active area
of research whose improvements would directly affect contact
solvers and, thus, physics simulation in robotics. Although
we did not observe cases causing our algorithm to diverge,
working towards theoretical convergence guarantees could be
an interesting research direction. Moreover, our algorithm for
inverse dynamics could be generalized to account for the
underactuation and the unfeasible reference accelerations it
can induce.

Finally, we believe these promising results are a further
step towards more computationally efficient and physically
consistent simulators which, due to their centrality, could
positively impact the overall robotics community and related
fields where efficient and reliable simulation matters.
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e semilinearizzata. Rendiconti di Matematica e delle sue
applicazioni, 18(5):95–139, 1959.

[49] Russell Smith. Open dynamics engine, 2008. URL http:
//www.ode.org/. http://www.ode.org/.

[50] Olivier Stasse, Thomas Flayols, Rohan Budhiraja, Kevin
Giraud-Esclasse, Justin Carpentier, Joseph Mirabel,
Andrea Del Prete, Philippe Souères, Nicolas Mansard,
Florent Lamiraux, et al. Talos: A new humanoid research
platform targeted for industrial applications. In 2017
IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids), pages 689–695. IEEE, 2017.

[51] Bartolomeo Stellato, Goran Banjac, Paul Goulart,
Alberto Bemporad, and Stephen Boyd. Osqp:
An operator splitting solver for quadratic programs.
Mathematical Programming Computation, 12(4):637–
672, 2020.

[52] Alessandro Tasora, Dario Mangoni, Simone Benatti,
and Rinaldo Garziera. Solving variational inequalities
and cone complementarity problems in nonsmooth
dynamics using the alternating direction method of
multipliers. International Journal for Numerical Methods
in Engineering, 122(16):4093–4113, 2021.

[53] Russ Tedrake and the Drake Development Team. Drake:
Model-based design and verification for robotics, 2019.
URL https://drake.mit.edu.

[54] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots
and systems, pages 5026–5033. IEEE, 2012.

https://doi.org/10.21105/joss.00500
https://doi.org/10.1145/3309486.3340247
https://hal.archives-ouvertes.fr/hal-01713847
https://github.com/humanoid-path-planner/hpp-fcl
https://github.com/humanoid-path-planner/hpp-fcl
http://www.ode.org/
http://www.ode.org/
https://drake.mit.edu


[55] Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and
François Faure. Stable constrained dynamics. ACM

Transactions on Graphics (TOG), 34(4):1–10, 2015.


	Introduction
	Background
	Equality-constrained dynamics
	Compliant constraints
	Constrained dynamics from an optimization perspective
	Proximal algorithms
	Modeling frictional unilateral contacts: the Nonlinear Complementary Problem
	Existing solvers

	Efficient solving of frictional contact dynamics
	NCP as a cascade of optimization problems
	Proximal ADMM formulation
	Pseudocode of the ADMM updates
	Primal and dual convergence criteria
	Exploiting problem sparsity
	ADMM parameters update strategies
	Pseudocode

	Inverse Dynamics
	Evaluations and Benchmarks
	Simulation benchmarks: standard robotics systems
	Comparison against state-of-the-art physics engines
	Complex scenarios of computational mechanics
	Inverse dynamics

	Discussion
	Conclusion

