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Abstract—To realize effective large-scale, real-world robotic
applications, we must evaluate how well our robot policies adapt
to changes in environmental conditions. Unfortunately, a majority
of studies evaluate robot performance in environments closely
resembling or even identical to the training setup. We present
THE COLOSSEUM, a novel simulation benchmark, with 20 di-
verse manipulation tasks, that enables systematical evaluation of
models across 14 axes of environmental perturbations. These per-
turbations include changes in color, texture, and size of objects,
table-tops, and backgrounds; we also vary lighting, distractors,
physical properties perturbations and camera pose. Using THE
COLOSSEUM, we compare 5 state-of-the-art manipulation models
to reveal that their success rate degrades between 30-50% across
these perturbation factors. When multiple perturbations are
applied in unison, the success rate degrades ≥75%. We identify
that changing the number of distractor objects, target object
color, or lighting conditions are the perturbations that reduce
model performance the most. To verify the ecological validity of
our results, we show that our results in simulation are correlated
(R̄2 = 0.614) to similar perturbations in real-world experiments.
We open source code for others to use THE COLOSSEUM, and
also release code to 3D print the objects used to replicate the real-
world perturbations. Ultimately, we hope that THE COLOSSEUM
will serve as a benchmark to identify modeling decisions that
systematically improve generalization for manipulation.

I. INTRODUCTION

The promise of robotics requires ubiquity. For effective
real-world deployment, robots must operate in a variety of
environments. When asked to turn on a stove, a robot should
be able to turn the stove’s knob, regardless of the size of the
knob, irrespective of the kitchen’s backdrop, invariant to the
kitchen counter’s texture, during the day, or even under a dim
evening light. Unfortunately, a majority of studies evaluate
robot performance in environments closely resembling or even
identical to the training setup [62, 21, 4, 10].

Naturally, generalization to environmental conditions has
been a large focus in recent literature. Both Reinforcement
Learning (RL) [65, 46, 42] and Behavior Cloning (BC) [74,
62, 45, 21] struggle with generalization if not trained on suffi-
ciently representative data. In response, robotics researchers
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Fig. 1: Evaluating generalization with THE COLOSSEUM.
Task-averaged success rate for 5 SotA robotic manipulation
policies over 14 perturbation factors and 20 robotic manipula-
tion tasks. Changes in RGB input space affects all models due
to end-to-end RGB-based training. Image-based models are
also affected by camera pose change, while models without
in-the-wild pretraining suffer in the presence of distractors.

have recently released large-scale diverse behavior cloning
datasets, with trajectories collected either in simulation [17,
19] or in the real world [50]. With these datasets, different
techniques—including data augmentation [35, 70, 62], pre-
training on large vision and robot datasets for BC [45, 55, 5],
and incorporating 3D priors [62, 61, 20, 63]—claim to improve
generalization for manipulation tasks. Although these tech-
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Fig. 2: THE COLOSSEUM Challenge. This challenge is designed to enhance generalization of Behavior Cloning (BC) models
in robotic manipulation tasks. It involves four key phases: 1) Participants generate a standard training dataset from 20 tasks with
100 demonstrations each, without perturbation_factors. 2) Participants train their BC models using this standardized
dataset. 3) The models are restricted to evaluate over a fixed 25 episodes across 14 different perturbation_factors. 4)
Models are ranked on a leaderboard based on the percentage change in their performance across these factors. We’ve shown
that simulation aligns with real-world evaluation, so participants can expect similar generalization when participating in the
simulation benchmark.

niques showcase improvements, the evaluation benchmarks
are not designed to stress-test the policies against systematic
perturbations to the environment.

We introduce THE COLOSSEUM, a comprehensive bench-
mark aimed at systematically evaluating the generalization
of robot manipulation to environmental perturbations. THE
COLOSSEUM introduces perturbations across 20 different tasks
from the RLBench [31] framework, spanning 14 dimensions of
perturbations. These perturbations include object color, object
texture, object size, table color, table texture, the presence of
distractor objects, changes to the camera pose, and changes to
physical properties like friction and mass. THE COLOSSEUM
also includes a parallel real world evaluation with task setups
and objects reproducible via open-sourced 3D printing models.

We evaluate four state of the art BC models using THE
COLOSSEUM and draw insights into answers for critical re-
search questions on generalization for BC policies. Consider-
ing 3D versus 2D reasoning methods, we find that 3D-based
BC models demonstrate superiority over 2D-based methods
in terms of overall task performance when using a fixed
set of training data while also achieving better robustness
to environmental perturbations. Among 2D and 3D models,
distractors, color-related and lighting perturbations have the
most significant impact on task success. Conversely, perturba-
tions on object size had less impact in both settings. Finally,
we establish a strong correlation between falling task success
under perturbations in simulations and those observed in real-
world scenarios for the same tasks, suggesting that THE
COLOSSEUM evaluations in simulation give reliable insight
into real world generalization at a fraction of the setup cost.
THE COLOSSEUM challenge and leaderboard (Figure 2) will
provide as a unified platform to develop, evaluate, and compare
future robotic manipulation methods that stand the test of
robustness and generalization.

II. RELATED WORK

Prior works have made contributions towards benchmarking
robot manipulation, developing robust models, and demon-
strating generalization. THE COLOSSEUM builds on these
efforts to create a systematic evaluation of multiple forms of
test time generalization a trained policy may face.

A. Robotic Manipulation Benchmarks

Benchmarks in computer vision have significantly advanced
the development of more generalized vision systems in recent
decades by introducing numerous challenges and leaderboards
[14, 34, 36], subsequently scaling into extensive foundational
vision models [7, 3, 38]. Similarly, robotics datasets have
demonstrated considerable diversity across various dimensions
[12, 16, 18, 33, 71], particularly with the evolution of imitation
learning and, more specifically, behavior cloning (BC). This
progress has led to a proliferation of datasets and benchmarks
aimed at assessing BC model task performance. Furthermore,
most of these robotic benchmarks focus on evaluating model’s
capability to adapt to new tasks by changing the nature of the
task [31, 77], it’s functionalities[25, 39], or even environment
[13, 53]. However, a gap remains in systematically evaluating
and comparing different BC models on a large-scale, both in
simulation and in real-world. Additionally, many of the bench-
marks and datasets with perturbations have been specifically
defined or curated as part of various BC or reinforcement
learning works [76, 24, 71]. However, they do not provide an
unified framework to evaluate all potential perturbations for
generalization, primarily because they are not the main focus
of these works.

Factor World [68] and KitchenShift [69] are similar efforts
to THE COLOSSEUM. However, Factor World encompasses
only 11 variation factors across 19 tasks, whereas KitchenShift
contains 7 variation factors across 3 tasks. In contrast, The



Benchmark Simulator No. of perturbations No. of tasks Physical
perturbation

Real-world
reproducibility

No. of SoTA
models

GROOT [76] LIBERO [37] 3 3 × ✓ 4
VLMBench [75] RLBench [31] 8 8 × × 3
KitchenShift [69] Isaac Sim [40] 7 3 × × 5
FactorWorld [68] MuJoCo [66] 11 19 × × 2
THE COLOSSEUM (ours) RLBench [31] 14∗ 20 ✓ ✓ 5

TABLE I: Generalization benchmarks comparison. THE COLOSSEUM is the largest and most diverse benchmark for
evaluating generalization in robotic manipulation policies, covering a wide range of variations and tasks. It is also the first
to incorporate physical property perturbations. Similar to GROOT [76], we offer comprehensive instructions and 3D printed
components for replicating real-world experiments. Additionally, we evaluated a variety of robot manipulation policies. One
asterisk (*) indicates that, unlike the other benchmarks, the object’s position is considered a default perturbation and was not
counted as an additional perturbation.

COLOSSEUM boasts 14 factors of variation over 20 tasks.
Beyond that, THE COLOSSEUM supports both 2D and 3D
models, unlike Factor World which only evaluates on 2D
visual-motor policies. Furthermore, we employed 3D printed
objects to test with a Franka Panda robot arm to enable easy
replication of our real-world experiments.

B. Robotic Manipulation Methods

There are myriad approaches that model robotic manipula-
tion in simulation and real world in various different ways.
Vanilla RL or BC [47, 44, 59, 51, 73] have been the popular
choice since a long time, where a Multi-layer Perceptron
(MLP) [52] or a Recurrent Neural Network (RNN) [58]
type models use either low-dimensional object poses [64] or
images [10] as the state input and predict continuous actions
for the robot’s controller in end-effector or joint space [60].
An emerging area of work takes the path of representa-
tion learning, either by pretraining a model with external
knowledge [45, 55] or using pretrained representations from
vision or language domains [61, 27, 4, 5]. Recently, training
generalist models on large-scale real robot datasets, collected
across several robotics research labs [50], to obtain a diverse
set of skills in diverse environments and robots, have shown
promising results in effectively scaling robust robot policies.
Another line of work uses diffusion architecture to learn to
generate robot trajectories in state or action space using the
denoising process [2, 10, 8]. Some works have proposed
distilling neural feature field representations for downstream
BC [72] or RL [15]. Gervet et al. [20] learn with 3D feature
field created from 2D pretrained image features and adaptive
scene resolution to compute 3D action maps of high spatial
resolution. Wang et al. [67] and Mandlekar et al. [41] propose
scalable learning by watching humans or automatically gener-
ating large-scale datasets from a few human demonstrations.
Another work uses large-scale TAMP generated data in simu-
lation to learn a scalable multitask policy [11]. Recent robotic
manipulation works have also proposed learning keypoint
action prediction [32, 62, 63, 21] or action chucking [74]
instead of predicting continuous control actions. We select a
few recent SOTA methods, that have been applied to both
simulation and real world, to evaluate on THE COLOSSEUM

Fig. 3: THE COLOSSEUM benchmark distribution. This
benchmark encompasses 14 perturbation_factors
within 20 distinct RLBench tasks, categorized into three
tiers (simple, intermediate, and complex) according to the
number of way-points involved (task horizon). Collectively,
THE COLOSSEUM presents 20,371 unique task perturbations
instances.

including 2D and 3D learning methods, that operate with
keypoint action prediction.

C. Generalization in Robotic Manipulation

Traditionally, enhancing generalization in imitation learn-
ing involves employing image or 3D data augmentation
techniques, akin to those used in computer vision. These
techniques encompass random shifts, color adjustments, and
rotations [62, 35, 23, 70]. Sim-to-real transfer methods utilize
advanced simulation environments for domain randomization
and preliminary policy training before real-world applica-
tion [48, 26, 43]. Recent developments in extensive vision
and language models present a novel path to generalization:
pretrained on vast image and language datasets, these mod-
els offer potentially more robust representations for robotic
manipulation or can even directly inform actions [1, 27, 9, 5].



III. THE COLOSSEUM

THE COLOSSEUM is a comprehensive simulation bench-
mark, built by extending RLBench, consisting of 20 di-
verse robotic manipulation tasks, each enabled with 14
perturbation_factorsẆe base off of RLBench as
it provides a variety of realistically useful tasks, with a
scripted demonstration generation framework, broad variance
in their task horizon (i.e. the number of controller steps
required to complete the task) and primitive actions (such
as pick, place, open, close, turn, and slide). We define
perturbation_factors as scene properties, such as
object color or lighting conditions. These properties can be
changed to cause data distribution shifts at test-time such
that the input distribution changes p(xtest) ̸= p(xtrain), but
the conditional probability of action distribution remains the
same p(ytest|xtest) = p(ytrain|xtrain), as the underlying task
does not change. This form of distribution shift in Out-of-
Distribution (OoD) generalization research is referred to as
covariate shift [28].

With THE COLOSSEUM, we proposed over 20,371 unique
task instances from a list of 20 tasks. The tasks are also
categorized into three tiers of difficulties based on the task
horizon, which inherently makes the tasks harder due to
compounding error in BC [57]. The detailed breakdown of
the number of unique instance per variation is also shown in
Figure 3.

We describe our task selection strategy,
perturbation_factors category and implementation
in the following subsections. Thereafter, we describe the
extension of THE COLOSSEUM in the real-world for 4
tasks replicated from the simulation. We finally propose the
THE COLOSSEUM Challenge and explain the training and
evaluation procedure expected for leaderboard participation
compliance.

A. Methodology for Task Selection

We curate the task list for THE COLOSSEUM from the
default suite of 100 tasks in RLBench. This selection ensures
the feasibility of generating waypoints to facilitate task ex-
ecution after incorporating our perturbation_factors.
Our methodology involved discerning overlays within certain
tasks, leading to the inclusion of tasks that require a versatile
spectrum of primitive actions. This spectrum encompasses
tasks ranging from straightforward ones, requiring fewer than
100 steps (e.g., open drawer), to more intricate challenges
like empty dishwasher, which may exceed 1000 steps.
Figure 3 shows the complete list of tasks classified into zones
of complexity based on the horizon of the tasks.

B. Perturbation Factors

We create 14 perturbation_factors and apply each
of them to the above 20 tasks where compatible. We categorize
them as follows:

a) Manipulation object (MO) perturbation: MO is a task-
relevant object that is directly manipulated or interacted with
by the robot. For instance, in put wine in rack task, the
‘wine bottle’ is the manipulation object. MO variations include
MO_Color, MO_Texture, MO_Size.

b) Receiver object (RO) perturbation: RO is a task-
relevant object that is not directly interacted with by the robot,
for example, the ‘rack’ in put wine in rack task. RO
variations include RO_Color, RO_Texture, RO_Size.

c) Background perturbation: Factors that do not re-
late to task-relevant objects, but are background character-
istic of the scene. These variations include Light_Color,
Table_Color, Table_Texture, Distractor objects,
Background_Texture of the walls, and Camera_Pose.

d) Physical perturbation: Factors that affect physical
properties of the objects involved in the task, such as,
Object_Friction where the task involves sliding of an
object, and Object_Mass where the gripper needs to adapt
to force required for moving the object.

THE COLOSSEUM supports applying one or more
perturbation_factors defined above in the same scene
and study its effect at test-time.

C. Implementation of Perturbation Factors

Following RLBench, our implementation utilizes PyRep
[30], a low-level API, to interact with the underlying
CoppeliaSim [56] simulator. The PyRep API allows the
control of simulator properties such as color, texture, scaling,
and pose of the objects in the scene. We implement 14
perturbation_factors (shown in Figure 2: part 3) as
an extension of the RLBench task benchmark. We expose
the configuration of supported perturbations via configura-
tion files written in YAML. Our implementation is easily
extensible for other researchers to build on and edit the
benchmark, for adding new perturbation_factors or
new tasks, along with the ease of configuring any combination
of perturbation_factors and their parameters, where
compatible.

To implement texture or color perturbations, we randomly
sample a texture or color from our curated set. We provide a
set of 213 textures and 20 colors. These assets were used
for implementing MO_Color, MO_Texture, RO_Color,
RO_Texture, Table_Color, Table_Texture, and
Background_Texture. To implement size perturbations
(MO_Size and RO_Size), we sample a scaling factor from
a continuous range, specified for each object that supports
this factor. For instance, the range for MO_Size in the
task basketball_in_hoop is [0.75, 1.25], differs from
that in task hockey [0.95, 1.05], as this parameter is quite
dependent on the conditions of the objects in the scene.
We include the remaining task parameters in the Appendix.
The waypoints get re-scaled with the object, and if not,
we reposition them proportionally with respect to the ob-
ject center, while ensuring that RLBench’s scripted demon-
stration generation from waypoints remains functional. The



Distractor objects are sampled from a set of 78 ob-
ject models taken from the YCB Object Dataset [6] and
converted to CoppeliaSim compatible .ttm format. We
utilize predefined object spawn boundaries to place these
objects on table-top or on another object. To modify Light
Color, we randomly sample RGB values from our specified
range of [0.0, 0.0, 0.0] to [0.5, 0.5, 0.5], and apply it to all 3
directional lights surrounding the scene. We perturb Camera
Pose for 3 cameras — front, left shoulder, and right shoulder
— by changing their positions and orientations in Euler an-
gles, sampled from ranges [−0.1,−0.1,−0.1] to [0.1, 0.1, 0.1]
and [−0.05,−0.05,−0.05] to [0.05, 0.05, 0.05] respectively.
Object_Friction is implemented by changing the friction
coefficient of the object with a value sampled from the range
[0.75, 1.0]. Object_Mass changes the mass of objects with a
value sampled from a given range, where the ranges are task
dependent (provided in Appendix). We provide our texture,
color, and object model assets with the benchmark code, which
can also be augmented easily for additional assets, as required.

Some MO and RO perturbations do not apply to all the
tasks, due to two main reasons. RO perturbations do not
apply to tasks when there is no RO object, for instance,
open drawer task. Additionally, PyRep doesn’t support
application of surface texture or scaling for objects made
up of compound shapes, such as the ‘dishwasher’ in empty
dishwasher task.

D. Real-World Tasks and Perturbations

For the real-world extension of THE COLOSSEUM, we
implement perturbation_factors akin to those in
simulation. We create real-world mirrors for 4 RLBench
tasks: insert onto square peg, slide block to
target, scoop with spatula, and setup chess. To
ensure replicability of our real-world benchmark extension,
we created these four tasks with 3D-printed objects, identical
to those in the RLBench tasks, with the various variant
factors to support the perturbations. We open-source our
3D-printed object models, which are inexpensive to print,
to facilitate reproduction of our real-world tasks and their
perturbation_factors.

Our real-world experiments utilized a Franka Panda
robot arm, replicating the setup in RLBench, for
both collecting training data and evaluation on the
perturbation_factors. To create size perturbation
(MO_Size and RO_Size), we 3D printed identical
manipulation objects in 2 additional sizes. For object
color and texture perturbation (MO_Color, RO_Color,
MO_Texture and RO_Texture) we 3D printed the objects
in two alternate colors and textures. For Table_Color,
Table_Texture, and Background_Texture, we use
two different sets of table mats or wallpapers to mirror
these perturbation_factors in the real-world. For
Camera_Pose, we re-calibrate the front camera at two
different spots that differs from the camera pose set during
training data collection. Lastly, the Light_Color was
simulated with a dynamically color-changing spotlight.

Finally, to introduce Distractor objects, we incorporated
additional random tabletop objects into the scene. We present
our real-world setup in Figure 4.

E. THE COLOSSEUM Challenge

We propose THE COLOSSEUM Challenge to enable de-
velopment of generalizable Behavior Cloning (BC) models
for robotic manipulation tasks. As shown in Figure 2, the
challenge involves four key phases: 1) Participants generate a
standard training dataset for 20 tasks with 100 demonstrations
each, without perturbation_factors. 2) Participants
train their BC models using this standardized dataset. 3) The
models should evaluate over a fixed 25 episodes set of each of
the 14 perturbation_factors. 4) Models are ranked on
a leaderboard based on the percentage change in their perfor-
mance across these perturbation_factors. Demonstra-
tions data for training and testing can be generated via scripted
experts from RLBench. Each task is equipped to instantiate
object pose-variated episodes ensuring an inexhaustible supply
of task-specific demonstrations. Demonstrations are collected
automatically through motion planners that navigate through
manually defined waypoints.

As we show in our results, evaluation in the simulated
benchmark aligns well with that on our reproducible real-
world mirror. Therefore, participants can expect similar gener-
alization in real-world when participating in THE COLOSSEUM
Challenge in simulation. Participants can reproduce and eval-
uate on the real-world part of benchmark, however, submitting
real-world results to the leaderboard will remain optional.

IV. EXPERIMENTS

In this section we define our problem formulation for base-
line training, followed by describing the baselines methods
and their respective training logistics. Thereafter, we elucidate
THE COLOSSEUM’s standard training and evaluation protocol.
Finally, we describe our real-world setup and its training
details.

A. Dataset and Problem Formulation

The problem is to learn action prediction from robot’s
observation and the language instruction. The training
dataset of demonstration consists of N trajectories, τi =
{(oj , aj , pj), l}Tj=1 where o is the observation and a is a
continuous robot arm action. An action aj is the 6-DoF gripper
pose and it’s open or close state, an observation oj is a set
RGBD images from a given number of cameras, and robot
arm’s proprioception pj is the arm’s current pose, at time step
j. Each trajectory is paired with a template-generated English
language instruction l.

Following recent SotA [29, 32, 62, 21], we use keypoint-
based action prediction instead of predicting continuous 7-DoF
actions. The keypoint actions are discovered using intuitive
heuristics, such as instances where the arm’s joint velocities
are close to zero, and whether the gripper’s open state has
changed.



Fig. 4: Real-World training tasks and their evaluation time perturbations. A PerAct agent, trained using real-world
demonstrations for the four tasks shown, was tested on real-world perturbation_factors. This evaluation involved
perturbing factors similar to the procedural benchmark in the simulation.

B. Baselines

We study 5 SotA baselines, including one zero-shot open
vocabulary model (VoxPoser), two 2D learning mod-
els (R3M-MLP, MVP-MLP) and two 3D learning models
(PerAct, RVT). We choose these methods as baselines as
they establish themselves as strong robot learning methods.
They are also diverse in their approach, allowing us to study
the effect of aspects such as, pretraining and 2D vs 3D based
learning. For all baselines, the language is encoded using a
frozen CLIP [54] model.

1) 2D learning models: R3M-MLP and MVP-MLP use
pretrained visual encoders, pretrained on out of domain task-
agnostic real-world images. MVP [55], a ViT-Base model
with 86M parameters, learns representations with 4.5M in-
the-wild images on task-agnostic real world data using a
self-supervised masked reconstruction objective. R3M [45], a
ResNet-50 model with 23M parameters, learns representation
using egocentric human videos with captions [22] via video-
language contrastive and temporal loss objectives. Both rep-
resentations have been shown to be effective for downstream
task adaptation using RL or BC, via an MLP action prediction
head, both in simulated and real world settings. We adapt

these pretrained encoders similarly by freezing the encoders
and adding an MLP prediction head with ∼3M trainable
parameters. We train both models with batch size 32 for
300k training iterations. The input to the model is 4 camera
RGB views encoded by their respective pretrained train visual
encoder (no depth, as per prior work’s use case), encoded
language instruction, and proprioception. Following the prior
work [45, 55], we predict raw 7-DoF keypoint pose of the
robot arm in continuous space.

2) 3D learning models: PerAct is a transformer-based
robotic manipulation BC model that takes tokenized voxel grid
and language instruction as the input, to predict discretized
voxel grid translation point, discrete rotation in Euler angles,
and gripper’s binary (open/close) state. PerAct works with
3D voxel grid tokens, akin to visual patch tokens or language
tokens in vision or language transformers. Following the
original implementation, we use a voxel grid of size 1003,
corresponding to an actual volume of 1.0m3. The patch tokens
of size 53 are encoded via a 3D convolution layer with kernel-
size and stride of 5, resulting in 203 = 8000 voxel observation
tokens. Actions are discretized via voxelized keypoint-based
action prediction. The actions are then predicted as the next-



best voxel that is closest to the center of the gripper fingers
for the next translation pose. Rotation pose is discretized into
bins of 5o increments. The input to the model is the encoded
language instruction, proprioception, and 4 camera RGBD
views, which gets preprocessed into a voxel grid with voxel
occupancy and RGB channels. The model has ∼33M trainable
parameters. We train this model with batch size 16 for 300k
training iterations.
RVT is a multi-view transformer-based robotic manipulation

BC model that uses tokenized image patches and CLIP-
encoded language instruction tokens as input to predict key-
point actions as translation heatmaps, discretized rotation in
Euler angles, and gripper’s binary state. RVT re-renders the
captured RGBD views from new virtual camera views via
constructing a 3D point cloud. This procedure decouples
the camera images from the images fed to the model, as
well as allows generating more viewpoints unrestricted by
real-world constraints. The transformer attends over language
instruction, re-rendered views, and robot’s proprioception to
predict actions. The model predicts heatmaps for each input
view, which is then back-projected to a discretized set of
3D points densely populating the robot’s workspace, out of
which the point with the highest score is chosen as the next
translation point. Rotation and gripper state prediction remain
the same as PerAct. We train RVT, with ∼36M trainable
parameters, on our 20 tasks with batch size 24 for 100k
iterations, following its original configuration.

C. Zero-Shot manipulation model using Large Pretrained
World Models

VoxPoser[27] is a formulation that aims to extract af-
fordances and constraints using LLMs. Through code, it
composes 3D value maps in observation space to guide robotic
interactions. We utilized their RLBench implementation for
VoxPoser, providing variation descriptions from each demon-
stration as input language text. We manually annotated all cor-
responding RLBench[31] objects with their respective object
names mentioned in the variation descriptions. We conducted a
zero-shot evaluation of VoxPoser using THE COLOSSEUM’s
evaluation protocol, without any training involved.

D. Training and Evaluation Protocol

We apply THE COLOSSEUM training and evaluation to
each of the above models. We train with 100 demos per
task without any of THE COLOSSEUM perturbations applied.
However, we do apply the default RLBench task varia-
tions in the training, i.e., changing language instruction and
task target — for instance, open drawer’s RLBench vari-
ations include open bottom drawer, open middle
drawer, open top drawer — to maintain the original
baseline training settings.

For consistent evaluation, we generate training and test
data once and use the last checkpoint for each of the
above trained baselines, and evaluate on each of the
perturbation_factors. We fix each task to the de-
fault RLBench task variations (for instance, open bottom

drawer in the above example) in order to closely eval-
uate the effect of our applied perturbations. However,
we do not fix the object pose variations across our
test episodes. We refer to the default RLBench variation
without any perturbation_factors applied as No
Perturbation test set. In addition, we also analyze all
perturbations activated together (All Perturbations).
That makes THE COLOSSEUM test sets 235-strong, with 25
episodes per test set. A test episode is successful if the model
completes the task fully. We report the average success rate for
each test set, further averaged across tasks, referred to as task-
averaged success rate hereon. We include per task performance
in the Appendix. We report results with one training seed and
one evaluation seed over the benchmark per baseline model.

E. Real-World Setup

In our real-robot experiments, we employed a Franka Panda
manipulator equipped with a parallel gripper for data collec-
tion and evaluation. For perception, a front-facing Kinect-2
RGB-D camera was utilized. We collected real-world demon-
strations using an HTC Vive controller, gathering 5 demonstra-
tions for each of the 4 tasks. To facilitate comparative analysis,
we trained a PerAct model [62] with ∼33M parameters
on these real-world demonstrations for 200k iterations with
a batch size of 1. In a similar vein, we trained another
multi-task instance of PerAct in the simulated environment,
focusing on the same four tasks. This simulation model, also
comprising ∼33M parameters, was trained over 50k iterations
with a batch size of 4. For consistency in evaluation between
simulation and the real-world, we evaluated both models on all
perturbation_factors and No Perturbation test
sets, each with 10 episodes, for 3 separate runs.

V. RESULTS

We report our results as task-averaged success rate of
different baselines on THE COLOSSEUM and draw insights
based on which perturbation_factors affect which
kind of baseline. We also perform an upper bound training ab-
lation when training and testing with All Perturbations
enabled. Lastly, we report our simulation and real-world
benchmark alignment analysis based on model success rates
on the perturbation_factors.

A. Performance of different baselines on THE COLOSSEUM

We report absolute task-averaged success rates in Figure 1
for all baselines and perturbation_factors. All po-
lar axes are comparable, except MO_Texture, MO_size,
RO_Color, RO_Texture, and RO_Size axes that have
different task averages, since they don’t apply to all 20
tasks (more details reported in the Appendix). We also re-
port the above results as percentage change with respect
to No Perturbation, averaged across 20 tasks, along
with qualitative failure cases associated with each of the
perturbation_factors in Figure 5. For factors that
were not applicable or infeasible in simulation on some tasks,
we compare their averages only with corresponding task’s No
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Fig. 5: Task-averaged success rate % change for 4 baseline models on perturbation_factors, compared to No
Perturbation test set. We report the evaluation with All Perturbations enabled, followed by each individual factor,
average of all individual factors, and on RLBench variations (that is sampled from the same distribution as the training set).
The images on top show failure examples for each factor with captions explaining the failure. • indicates undefined value when
the corresponding No Perturbation task averages are also 0. ◦ indicates 0% change with respect to No Perturbation
task average.

Perturbation case on which that perturbation was applied
and evaluated. Applying All Perturbations in the same
scene influences all the models significantly, leading to ≥75%
decrease in performance. What perturbation_factors
are the most affecting?

For 2D-models (R3M-MLP and MVP-MLP), we observe
that object and light color, texture, and camera pose are the
most affecting factors. Since these models are trained end-to-
end with RGB inputs, and the color or texture related perturba-
tions shift the input space, thereby affecting the output space as
well. Moreover, training with specific Camera_Poses when
using RGB as input also affects the performance when camera
poses are perturbed. We observe that MVP-MLP does better or
is not affected in presence of Distractors, which may be
due to the real world pretraining on cluttered scenes. This
result indicates value in pretraining on real-world data.

For zero-shot manipulation models using Large Pre-
trained World Models, we observed that the system
demonstrates robust generalization capabilities across var-
ious conditions, particularly excelling in tasks where
it is predisposed to succeed. Specifically, for the two
tasks in which VoxPoser excels, it maintains consistent
performance across all variants. For example, in the task

slide_block_to_target, the performance difference
between the No Perturbation scenario and the average
of all perturbations is a mere 3.21% relative to the No
Perturbation performance. This aligns with our expecta-
tion that leveraging large pretrained world models enables the
recognition of significant changes in environments and object
perturbations.

For 3D-models (RVT and PerAct), we observe that the
most affecting factors are color-related including object,
table and light colors as well as presence of Distractors,
while other factors cause a smaller performance decrease.
Since RVT and PerAct are both trained end-to-end with
RGB images or voxel grid with RGB channels, the color
perturbations remain challenging for these models as well.
These models lack any real-world pretraining, thus, the pres-
ence of Distractors puts the scene out of distribution,
significantly affecting their performance. We observe that
these model are robust to changes in Camera_Pose,
because they do not directly learn on captured view. They
instead preprocess the input RGBD views into a voxel grid or
re-rendered novel views. For these models, while each factor
doesn’t lead to a very significant effect on their performance,
all factors combined in one scene (All Perturbations)



Fig. 6: Real robot results and alignment analysis on perturbation_factors across 4 tasks. A) The plot illustrates
the empirical performance of two models, one trained using real-world data and the other with simulated data, each tested
across 10 episodes and 3 runs in their respective environments. Additionally, it displays a uniform distribution of standard
deviation between the models, highlighting which perturbation_factors align more strongly with empirical success
rates. B) To examine the correlations between simulation and real-world results for each perturbation independently, we have
plotted a scatter chart. This chart includes data points from one run for each task. We calculated the R2 value for each task
and illustrated their respective best-fit lines on the chart.

cause a significant decrease. On physical perturbations RVT
performs better than PerAct, perhaps because modelling in
RVT is more robust for keypoint prediction than PerAct
under these perturbations. Physical perturbation results for
other models are inconlcusive as they cannot perform the tasks
that support these perturbations.

We observe that 3D baselines are better perform-
ing generally (Figure 1), and on average much more
robust to environment perturbations as compared to
2D baselines (Figure 5). We also observe that RVT,
trained only with RGB views, generally gets more affected
with perturbation_factors as compared to PerAct,
trained with complete 3D scene, notably in the case of
Distractors. This result indicates value in learning with
3D scenes as input, for the resultant model is more robust to
such environmental perturbations, as it might be learning 3D
features of the objects instead of just their 2.5-dimensional
projections.

Train and Test w/o Perturbation

Train w/o Perturbation, Test w/ All Perturbation

Train and Test w/ All Perturbation 27.5

6.4

34.5

Train and test w/o perturbation
Train w/o pert, test w/ pert
Train and test w/ perturbationFig. 7: Task-averaged success rate ablation for All

Perturbations when training and testing with or without
all perturbations enabled.

B. Training on All Perturbations ablation

We report results on training PerAct with 100 de-
mos (with batch size 16 for 300k iterations) in All
Perturbations setting in Figure 7. Zero-shot evalua-
tion of a PerAct model trained on RLBench variations
data with no perturbation_factors enabled achieves

task-averaged success rate of 6.4% (28.1% lower than No
Perturbations task-averaged success rate). When we
train the model with with All Perturbations enabled,
the task-averaged success rate increases by 21.1% only.
However, the model should be able to perform the same
tasks under any environmental setting for being practically
deployable. This result indicates that THE COLOSSEUM’s
perturbation_factors not only study systematic per-
turbations added to the environment, but also increase the
difficulty of the tasks itself, even with ground truth perturbed
scenes available for training. From this ablation with All
Perturbations as proxy for an extreme case of factor
compounding, which is results in 28.1% lower in success
rates with respect to No Perturbations, hence suggesting
that compounding perturbation factors has some degree of
compounding effect toward models’ performance.

C. Real-world alignment analysis for THE COLOSSEUM

We first observed only a marginal difference in success rate
of 6.67% during evaluation on the No Perturbations
tasks between PerAct trained in simulation and that
in real-world settings. This served as a crucial sanity
check for tasks performance between the two models be-
fore advancing forward to evaluating them across the 14
perturbation_factors. We observed that for factors
such as MO_Texture, Light_Color, Table_Color,
Table_Texture, and Distractor, the discrepancies in
performance between both models on each individual factor
were marginal, remaining under 5%.

The observed variances in other factors may stem from
differences in waypoint annotations, physical robot inter-
actions, and training data’s visual distinctions. To further
investigate the correlation between simulation and reality,
we used the success rate performance of each individual



Fig. 8: Example rollouts using THE COLOSSEUM perturbations in tandem with comparable real-world scenarios. We
combine various THE COLOSSEUM variations to form three combinations of compounding perturbation scenarios, each paired
with a curated real-world scene (workbench, dining table, study room table) featuring the same set of perturbations that are
naturally present in the scene, similar to the approach used by [9]. We evaluate these combinations using PerAct model trained
on No Perturbation, and aim to establish a correlation between our simplified compounding perturbation scenarios and
realistic real-world scenes.

run for each task as a data point to calculate the coeffi-
cient of determination, or R-square values. Our results in-
dicated that for factors like MO_Color, Table_Texture,
and Camera_Pose, there was a moderate level of
correlation (0.46≤R²≤0.52). Conversely, factors such as
Background_Texture, Distractor, Table_Color,
Light_Color, RO_Color, RO_Texture, and RO_Size
has a R² value between 0.74 and 0.94 with Table_Color
being the most significant as illustrated in Fig 6B.
These results suggest that for at least 7 out of 14
perturbation_factors there is a strong correlation be-
tween the performances of the two models, thereby indicat-
ing a clear alignment between evaluation done on THE
COLOSSEUM in simulation and in the real-world.

Based on the results presented in Figure 6A, we also ob-
served that for real-world experiments, MO_Color exhibited
a substantial decline in task success, with an 82.6% drop,
whereas MO_Size demonstrated no performance reduction,
instead enhancing performance by 4.34%. Further examination
of individual episodes in the real-world experiments, we
observed that perturbations in Light_Color could signifi-
cantly alter an object’s visual appearance by casting differently
colored light, consequently impacting the BC model’s success
rate. Additionally, the MO_Color perturbation frequently
impeded the robot’s ability to accurately predict the 6D pose
for grasping the manipulation object. This finding is consistent
with results from simulation and underscores a critical aspect:
BC models like PerAct, which construct their 3D encoders
from the ground up without leveraging pretrained 3D features,

struggle to generalize across a wide range of object visuals.
This limitation highlights the challenge in developing robust
BC models capable of adapting to diverse visual environments.

D. THE COLOSSEUM perturbations grounded in the real-
world

To validate that the perturbations in THE COLOSSEUM
accurately mimic naturally occurring environmental or object
variations in real-world scenarios, we carried out an ablation
study. This study compared three realistic scenes—workbench,
dining table, and study room tabletop—with corresponding
perturbation combinations derived from THE COLOSSEUM as
shown in Figure 8. Utilizing a multitask instance of PerAct
trained with No Perturbation. We evaluated all the pairs
of scenarios for the task of slide_block_to_target.
Over five trials with ten episodes each, we observed a signifi-
cant correlation. Notably, the combination of [Distractor
+ MO_Size] resulted in an R2 = 0.75, while the combination
of [Light_Color + Table_Texture + Distractor +
MO_Size] achieved an R2 = 0.83. For further details on
the results and methodology, please refer to Supplementary
Section IV.E.

VI. LIMITATIONS AND FUTURE WORK

Currently, our leaderboard baselines only include 4 meth-
ods, which are all BC methods. In future, we plan to in-
clude RL-based methods [15]. In addition, we also plan to
include several other baseline methods, such as, those based
on diffusion [10], 3D feature feature fields [20, 72], large-
scale robotics pretraining [49], action tokenization [5], and



action chucking [74]. Expanding THE COLOSSEUM with these
methods will unify comparing effectiveness of robot learning
methods in a single leaderboard, while also providing a good
starter framework for researcher to develop new methods along
or beyond included baselines.

In our real-world experiments, a key limitation lies in
precisely replicating the pose, orientation, and execution of
tasks both in the collected training data and during evaluation.
Additionally, due to resource constraints, each perturbed factor
in the real-world setup was limited to only two alternate varia-
tions. As a result, the real-world findings primarily represent a
comparative performance distribution between the simulation
and real-world scenarios. Looking ahead, we aim to expand
the number of real-world tasks, ensuring they closely mirror
their counterparts in simulation. This expansion is intended
to enhance the reproducibility of simulated tasks, thereby
broadening benchmarking scope.

VII. CONCLUSION

We introduced THE COLOSSEUM, a comprehensive bench-
mark designed to assess the generalization capabilities of
Behavior Cloning (BC) models in robotic manipulation. THE
COLOSSEUM systematically perturbs the task environments
of the robot’s workspace along an exhaustive list of axes
— including object appearance and size, lighting, physical
properties of objects, background, table-top appearance, and
camera pose — both in simulation and real-world. Through
empirical studies conducted with SotA BC methods on THE
COLOSSEUM, we identified which perturbation factors most
significantly impact model’s success rates on tasks they are
trained to execute. Additionally, we demonstrated a close
alignment between THE COLOSSEUM in simulated and real-
world. To enhance reproducibility and facilitate future model
evaluations in both simulated and real-world, we will open-
source our resources along with the 3D printed assets. THE
COLOSSEUM offers a platform for future research to develop
and quantitatively evaluate robotic manipulation models before
scaling via a unified leaderboard.
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